--- a +++ b/data_augment.py @@ -0,0 +1,151 @@ +''' + Data augmentation strategies for facts lists +''' + +from bs4 import BeautifulSoup +import urllib +import pdb +import json +import os +import pandas as pd +import re +import numpy as np +import pickle + +from nltk.corpus import wordnet +from nltk.corpus import stopwords +from pattern.en import singularize,pluralize +import random + +from utils import get_stories + +random.seed(1234) +np.random.seed(1234) + +def check_repeated(name,repeated_list): + name = name.lower().strip() + return name if not (name in repeated_list) else repeated_list[name] + +def synonyms(data): + augment_n = 10 + data_dict = dict((key,[val]) for val,key,_ in data) + + is_plural = lambda word: singularize(word) <> word + stops = set(stopwords.words('english') + ['l']) + + for disease in data: + for _ in range(augment_n): + new_facts_list = [] + for fact in disease[0]: + new_fact = fact[:] + for k,word in enumerate(fact): + if word not in stops: + syn = wordnet.synsets(word) + if syn: + random_syn = syn[0] + random_lemma = random.choice(random_syn.lemma_names()) + random_lemma = pluralize(random_lemma) if is_plural(word)\ + else random_lemma + random_lemma = random_lemma.lower() + random_lemma = random_lemma.replace('_',' ') + random_lemma = random_lemma.replace('-',' ') + if ' ' in random_lemma: + continue + new_fact[k] = random_lemma + new_facts_list.append(new_fact) + #print new_facts_list + data_dict[disease[1]].append(new_facts_list[:]) + return data_dict + + # TODO: this is adding the name of the disease by synonym, check it! + +def remove(data,data_dict): + + num_delete = (3,15) # Number of facts to delete + min_delete = 5 # delete only if you have more than 8 facts + n_augment = 20 + + for (values,name,_) in data: + facts = data_dict[name] + new_facts = [] + for k in range(n_augment): + fact = random.choice(facts) + n_facts = len(fact) + if n_facts > min_delete: + max_facts = num_delete[1] if n_facts > 15 else n_facts - 1 + min_facts = num_delete[0] + n_choice = np.random.randint(min_facts, max_facts) + choice = np.random.choice(n_facts, n_choice, replace=False) + new_fact = [f for k,f in enumerate(fact) if k not in choice] + data_dict[name].append(new_fact) + new_facts.append(new_fact) + return data_dict + + +def permute(data,data_dict): + n_augment = 10 + + for (values, name,_) in data: + facts = data_dict[name] + new_facts = [] + for k in range(n_augment): + fact = random.choice(facts) + n_facts = len(fact) + permutations = np.random.permutation(n_facts) + new_fact = np.array(fact[:]) + new_fact = new_fact[permutations] + new_facts.append(new_fact) + data_dict[name].append(list(new_fact)) + + return data_dict + + +file_names = ['facts_list_all.txt'] + +training_set = [] +test_set = [] +data = [] + +for file_name in file_names: + print 'Reading {0} .....'.format(file_name) + read_file = open('data/{0}'.format(file_name), 'r') + # Data in format: + # [([[fact1],[fact2],..][answer])...] + # where each fact is a list of words + + data += get_stories(read_file) + + read_file.close() + + +# Data augmenting strategies +#1. Changing randomly nouns by synonyms +print('Data augmentation: synonyms') +data_dict = synonyms(data) +print('Number of diseases: {0}'.format(len(data_dict))) +#2. Removing facts randomly +print('Data augmentation: removing') +data_dict = remove(data,data_dict) +#3. Changing facts order +print('Data augmentation: permutation') +data_dict = permute(data,data_dict) + + +for (values, name,_) in data: + # Save training and test data + data_len = len(data_dict[name]) + training_size = int(0.7 * data_len) + test_size = int(0.3 * data_len) + facts = np.array(data_dict[name]) + indexes = np.random.permutation(len(facts)) + training_facts = facts[indexes[:training_size]] + test_facts = facts[indexes[training_size:]] + training_set += zip(list(training_facts),[name]*len(training_facts)) + test_set += zip(list(test_facts),[name]*len(test_facts)) + + +print(len(training_set)) +print(len(test_set)) +pickle.dump(training_set,open('data/training_set.dat','w')) +pickle.dump(test_set,open('data/test_set.dat','w')) +print 'Saved' \ No newline at end of file