[27805f]: / data_preprocessing.py

Download this file

284 lines (238 with data), 9.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# data_processing.py
import torch
from torch.utils.data import Dataset, DataLoader
import pandas as pd
from pathlib import Path
import logging
import albumentations as A
from albumentations.pytorch import ToTensorV2
import cv2
from transformers import AutoTokenizer
from typing import Optional, List, Tuple
from sklearn.model_selection import train_test_split
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
nltk.download('punkt')
nltk.download('stopwords')
# Define findings columns at the module level
findings_columns = [
'Enlarged Cardiomediastinum',
'Cardiomegaly',
'Lung Opacity',
'Lung Lesion',
'Edema',
'Consolidation',
'Pneumonia',
'Atelectasis',
'Pneumothorax',
'Pleural Effusion',
'Pleural Other',
'Fracture',
'Support Devices',
'No Finding'
]
class ChestXrayDataset(Dataset):
def __init__(
self,
data_frame: pd.DataFrame,
transform: Optional[A.Compose] = None,
is_training: bool = True,
max_length: int = 512
):
self.data = data_frame
self.transform = transform or self._get_default_transforms(is_training)
self.is_training = is_training
self.max_length = max_length
# Medical terms and abbreviations mapping
self.medical_abbreviations = {
'ap': 'anteroposterior',
'pa': 'posteroanterior',
'lat': 'lateral',
'bilat': 'bilateral',
'w/': 'with',
'w/o': 'without',
'vs': 'versus',
'etc': 'etcetera',
'aka': 'also known as',
'cf': 'compare',
're': 'regarding',
'esp': 'especially',
}
self.findings_columns = findings_columns
self.tokenizer = AutoTokenizer.from_pretrained('microsoft/biogpt')
self._preprocess_dataset()
def _clean_text(self, text: str) -> str:
"""Enhanced text cleaning function"""
if not isinstance(text, str):
return ""
# Convert to lowercase
text = text.lower()
# Replace medical abbreviations
for abbr, full in self.medical_abbreviations.items():
text = re.sub(r'\b' + abbr + r'\b', full, text)
# Remove special characters but keep necessary punctuation
text = re.sub(r'[^a-zA-Z0-9\s.,;:()/\-]', '', text)
# Standardize spacing
text = re.sub(r'\s+', ' ', text)
# Standardize sentence endings
text = re.sub(r'\.+', '.', text)
# Fix spacing around punctuation
text = re.sub(r'\s+([.,;:])', r'\1', text)
return text.strip()
def _preprocess_dataset(self):
"""Enhanced dataset preprocessing"""
initial_len = len(self.data)
# Convert image paths to Path objects
self.data['image_path'] = self.data['image_path'].apply(lambda x: Path(x))
# Clean and preprocess text fields (actual report)
self.data['findings_text'] = self.data['findings'].apply(self._clean_text)
# Remove invalid entries
valid_data = (
self.data['findings_text'].notna() &
(self.data['findings_text'].str.strip().str.len() > 0) &
self.data['image_path'].apply(lambda x: x.exists())
)
self.data = self.data[valid_data].reset_index(drop=True)
# Log preprocessing results
removed = initial_len - len(self.data)
if removed > 0:
logging.warning(f"Removed {removed} invalid entries from dataset")
if len(self.data) == 0:
raise ValueError("No valid samples remaining after preprocessing")
logging.info(f"Final dataset size: {len(self.data)} samples")
# Process findings labels (structured findings)
self.data['findings_list'] = self.data.apply(self._get_findings_list, axis=1)
def _get_findings_list(self, row):
findings_list = []
for col in self.findings_columns:
if col in row and row[col] == 1:
if col != 'No Finding':
findings_list.append(col)
else:
# If 'No Finding' is present, ignore other findings
findings_list = ['No Findings']
break
return findings_list
def _get_default_transforms(self, is_training: bool) -> A.Compose:
"""Enhanced image transformations"""
if is_training:
return A.Compose([
A.Resize(224, 224),
A.HorizontalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.OneOf([
A.GaussNoise(var_limit=(10.0, 50.0), p=1),
A.GaussianBlur(blur_limit=(3, 7), p=1),
A.MedianBlur(blur_limit=5, p=1)
], p=0.3),
A.OneOf([
A.OpticalDistortion(distort_limit=0.05, shift_limit=0.05, p=1),
A.GridDistortion(num_steps=5, distort_limit=0.05, p=1),
A.ElasticTransform(alpha=1, sigma=50, alpha_affine=50, p=1)
], p=0.3),
A.OneOf([
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=1),
A.RandomGamma(gamma_limit=(80, 120), p=1),
A.CLAHE(clip_limit=4.0, tile_grid_size=(8, 8), p=1)
], p=0.3),
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
ToTensorV2()
])
else:
return A.Compose([
A.Resize(224, 224),
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
ToTensorV2()
])
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, idx: int):
if torch.is_tensor(idx):
idx = idx.tolist()
# Get sample data
img_path = self.data.iloc[idx]['image_path']
findings_text = self.data.iloc[idx]['findings_text']
findings_list = self.data.iloc[idx]['findings_list']
# Load and process image
image = cv2.imread(str(img_path))
if image is None:
raise FileNotFoundError(f"Image not found or cannot be opened: {img_path}")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Apply transformations
if self.transform:
transformed = self.transform(image=image)
image = transformed['image']
return image, findings_text, findings_list # Return findings_text for alignment
def custom_collate_fn(batch):
"""Enhanced collate function with padding and attention masks"""
images = torch.stack([item[0] for item in batch])
findings_texts = [item[1] for item in batch] # Actual findings (for alignment)
findings_lists = [item[2] for item in batch] # Pathology findings list (for prompt)
return images, findings_texts, findings_lists
def get_dataloaders(
csv_with_image_paths: str,
csv_with_labels: str,
batch_size: int = 8,
train_split: float = 0.85,
num_workers: int = 4,
seed: int = 42,
collate_fn=custom_collate_fn
) -> Tuple[DataLoader, DataLoader]:
"""Enhanced dataloader creation with stratification"""
try:
# Read data
df_images = pd.read_csv(csv_with_image_paths)
df_labels = pd.read_csv(csv_with_labels)
# Merge datasets on 'image_id'
df = pd.merge(df_images, df_labels, on='image_id', how='inner')
logging.info(f"Merged dataset has {len(df)} samples")
# Create a stratification column based on the number of findings
df['num_findings'] = df[findings_columns].sum(axis=1)
df['strat_column'] = pd.qcut(df['num_findings'], q=5, labels=False, duplicates='drop')
# Stratified split
train_df, val_df = train_test_split(
df,
train_size=train_split,
random_state=seed,
shuffle=True,
stratify=df['strat_column']
)
# Create datasets
train_dataset = ChestXrayDataset(train_df, is_training=True)
val_dataset = ChestXrayDataset(val_df, is_training=False)
if len(train_dataset) == 0 or len(val_dataset) == 0:
raise ValueError("Empty dataset after preprocessing")
logging.info(f"Created train dataset with {len(train_dataset)} samples")
logging.info(f"Created validation dataset with {len(val_dataset)} samples")
# Create dataloaders with automatic batching
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
collate_fn=collate_fn,
persistent_workers=True
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
collate_fn=collate_fn,
persistent_workers=True
)
return train_loader, val_loader
except Exception as e:
logging.error(f"Error creating dataloaders: {str(e)}")
raise