[27805f]: / CheXbert / src / image_classifier / densenet.py

Download this file

239 lines (196 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import os
from tqdm import tqdm
import numpy as np
from sklearn.metrics import roc_auc_score
from read_data import ChestXrayDataSet
import torchvision
class ModifiedCheXNet(nn.Module):
def __init__(self, num_classes=14, pretrained_path=None):
super(ModifiedCheXNet, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
if pretrained_path and os.path.exists(pretrained_path):
print("=> Loading pretrained CheXNet weights")
checkpoint = torch.load(pretrained_path)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
# Remove 'module.' prefix and fix layer names
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
k = k[7:] # Remove 'module.' prefix
# Replace dots with underscores in layer names
k = k.replace('conv.1', 'conv1')
k = k.replace('conv.2', 'conv2')
k = k.replace('norm.1', 'norm1')
k = k.replace('norm.2', 'norm2')
new_state_dict[k] = v
# Load the processed state dict
try:
self.densenet121.load_state_dict(new_state_dict, strict=False)
print("Successfully loaded pretrained weights")
except RuntimeError as e:
print(f"Error loading pretrained weights: {e}")
# Freeze all layers except the last dense block and classifier
frozen_layers = [
'conv0', 'norm0', 'denseblock1', 'transition1',
'denseblock2', 'transition2', 'denseblock3', 'transition3'
]
for name, param in self.densenet121.features.named_parameters():
if any(layer in name for layer in frozen_layers):
param.requires_grad = False
# Modify the classifier
num_ftrs = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_ftrs, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, num_classes),
nn.Sigmoid()
)
def forward(self, x):
return self.densenet121(x)
def print_trainable_parameters(self):
"""Print which layers are trainable and which are frozen"""
print("\nTrainable layers:")
for name, param in self.named_parameters():
if param.requires_grad:
print(name)
print("\nFrozen layers:")
for name, param in self.named_parameters():
if not param.requires_grad:
print(name)
def train_model(model, train_loader, valid_loader, device, num_epochs=10):
criterion = nn.BCELoss()
# Different learning rates for different parts
classifier_params = list(model.densenet121.classifier.parameters())
feature_params = list(model.densenet121.features.parameters())
optimizer = optim.Adam([
{'params': classifier_params, 'lr': 1e-3},
{'params': feature_params, 'lr': 1e-5}
])
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
patience=2, factor=0.1)
best_val_auc = 0.0
for epoch in range(num_epochs):
# Training phase
model.train()
running_loss = 0.0
pbar = tqdm(train_loader, desc=f'Epoch {epoch + 1}/{num_epochs}')
for inputs, labels in pbar:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
pbar.set_postfix({'loss': f'{loss.item():.4f}'})
epoch_loss = running_loss / len(train_loader)
# Validation phase
model.eval()
val_loss = 0.0
all_labels = []
all_outputs = []
with torch.no_grad():
for inputs, labels in valid_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
all_labels.append(labels.cpu().numpy())
all_outputs.append(outputs.cpu().numpy())
val_loss = val_loss / len(valid_loader)
all_labels = np.concatenate(all_labels)
all_outputs = np.concatenate(all_outputs)
# Calculate AUC for each class
aucs = []
for i in range(all_outputs.shape[1]):
if len(np.unique(all_labels[:, i])) > 1:
auc = roc_auc_score(all_labels[:, i], all_outputs[:, i])
aucs.append(auc)
val_auc = np.mean(aucs)
scheduler.step(val_auc)
print(f'Epoch {epoch + 1}/{num_epochs}:')
print(f'Train Loss: {epoch_loss:.4f}')
print(f'Val Loss: {val_loss:.4f}, Val AUC: {val_auc:.4f}')
# Save best model
if val_auc > best_val_auc:
best_val_auc = val_auc
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'best_auc': best_val_auc,
}, 'best_chexnet_finetuned.pth')
def main():
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_dir = "split_data/images"
train_file = "split_data/train.csv"
valid_file = "split_data/valid.csv"
# Data transforms
train_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ColorJitter(brightness=0.1, contrast=0.1),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Create datasets
train_dataset = ChestXrayDataSet(
data_dir,
train_file,
train_transform
)
valid_dataset = ChestXrayDataSet(
data_dir,
valid_file,
val_transform
)
# Create data loaders
train_loader = DataLoader(
train_dataset,
batch_size=32,
shuffle=True,
num_workers=4,
pin_memory=True
)
valid_loader = DataLoader(
valid_dataset,
batch_size=32,
shuffle=False,
num_workers=4,
pin_memory=True
)
# In your main function:
model = ModifiedCheXNet(
num_classes=14,
pretrained_path='chexnet/CheXNet/model.pth.tar'
).to(device)
# Check which layers are trainable
model.print_trainable_parameters()
# Train the model
train_model(
model=model,
train_loader=train_loader,
valid_loader=valid_loader,
device=device,
num_epochs=20
)
if __name__ == '__main__':
main()