import torch
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
from PIL import Image
import logging
from pathlib import Path
from typing import Tuple, Optional
import albumentations as A
from albumentations.pytorch import ToTensorV2
import cv2
from sklearn.model_selection import train_test_split
class ChestXrayDataset(Dataset):
def __init__(
self,
data_frame: pd.DataFrame,
transform: Optional[A.Compose] = None,
is_training: bool = True
):
"""
Initialize the dataset
"""
self.data = data_frame
self.transform = transform or self._get_default_transforms(is_training)
self.is_training = is_training
# Clean and preprocess the dataset
self._preprocess_dataset()
def _preprocess_dataset(self):
"""Clean and preprocess the dataset"""
initial_len = len(self.data)
# Convert image paths to Path objects and check existence
self.data['image_path'] = self.data['image_path'].apply(lambda x: Path(x))
valid_paths = self.data['image_path'].apply(lambda x: x.exists())
# Remove rows with missing values or empty impressions
valid_data = (
self.data['findings'].notna() &
(self.data['findings'].str.strip().str.len() > 0) &
valid_paths
)
self.data = self.data[valid_data].reset_index(drop=True)
# Now, try to open each image and remove samples where images cannot be opened
invalid_indices = []
for idx in range(len(self.data)):
img_path = self.data.iloc[idx]['image_path']
image = cv2.imread(str(img_path))
if image is None:
logging.error(f"Error reading image {img_path}")
invalid_indices.append(idx)
if invalid_indices:
self.data = self.data.drop(index=invalid_indices).reset_index(drop=True)
logging.warning(f"Removed {len(invalid_indices)} samples due to image loading errors")
# Log removed entries
removed = initial_len - len(self.data)
if removed > 0:
logging.warning(f"Removed {removed} invalid entries from dataset")
if len(self.data) == 0:
raise ValueError("No valid samples remaining after preprocessing")
logging.info(f"Final dataset size: {len(self.data)} samples")
def _get_default_transforms(self, is_training: bool) -> A.Compose:
"""Get default transforms based on training/validation mode"""
if is_training:
return A.Compose([
A.Resize(224, 224),
A.HorizontalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.OneOf([
A.GaussNoise(p=1),
A.GaussianBlur(p=1),
], p=0.3),
A.OneOf([
A.OpticalDistortion(p=1),
A.GridDistortion(p=1),
], p=0.3),
A.OneOf([
A.RandomBrightnessContrast(p=1),
A.RandomGamma(p=1),
], p=0.3),
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
ToTensorV2()
])
else:
return A.Compose([
A.Resize(224, 224),
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
ToTensorV2()
])
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, str]:
"""Get a sample from the dataset"""
if torch.is_tensor(idx):
idx = idx.tolist()
# Get image path and impression
img_path = self.data.iloc[idx]['image_path']
impression = self.data.iloc[idx]['findings']
# Load and process image
image = cv2.imread(str(img_path))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Apply transformations
if self.transform:
transformed = self.transform(image=image)
image = transformed['image']
return image, impression
def get_dataloaders(
csv_path: str,
batch_size: int = 8,
train_split: float = 0.85,
num_workers: int = 4,
seed: int = 42
) -> Tuple[DataLoader, DataLoader]:
"""Create train and validation dataloaders"""
try:
# Read data
df = pd.read_csv(csv_path)
logging.info(f"Loaded dataset with {len(df)} samples")
# Split into train and validation
train_df, val_df = train_test_split(
df,
train_size=train_split,
random_state=seed,
shuffle=True
)
# Create datasets
train_dataset = ChestXrayDataset(train_df, is_training=True)
val_dataset = ChestXrayDataset(val_df, is_training=False)
if len(train_dataset) == 0 or len(val_dataset) == 0:
raise ValueError("Empty dataset after preprocessing")
logging.info(f"Created train dataset with {len(train_dataset)} samples")
logging.info(f"Created validation dataset with {len(val_dataset)} samples")
# Create dataloaders
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True
)
return train_loader, val_loader
except Exception as e:
logging.error(f"Error creating dataloaders: {str(e)}")
raise
def get_sample_batch(dataloader: DataLoader) -> Tuple[torch.Tensor, list]:
"""Get a sample batch from dataloader for testing"""
try:
images, impressions = next(iter(dataloader))
logging.info(f"Sample batch shapes - Images: {images.shape}")
return images, impressions
except Exception as e:
logging.error(f"Error getting sample batch: {str(e)}")
raise