[27805f]: / train.py

Download this file

442 lines (375 with data), 15.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import logging
import wandb
from pathlib import Path
from typing import Dict, Any
from torch.cuda.amp import autocast, GradScaler
from datetime import datetime
from data2 import data_processing
from alignment_model import ImageTextAlignmentModel
from report_generator import MedicalReportGenerator
from biovil_t.pretrained import get_biovil_t_image_encoder # Ensure this import path is correct
from rouge_score import rouge_scorer
def train_epoch(image_encoder, alignment_model, report_generator, train_loader,
contrastive_loss, alignment_optimizer, generator_optimizer,
alignment_scheduler, generator_scheduler, scaler, device,
gradient_accumulation_steps, max_grad_norm, epoch):
alignment_model.train()
report_generator.train()
image_encoder.eval()
# Metrics tracking
total_train_loss = 0.0
total_align_loss = 0.0
total_gen_loss = 0.0
total_samples = 0
progress_bar = tqdm(train_loader, desc=f'Training Epoch {epoch}')
for batch_idx, (images, findings_texts, findings_lists) in enumerate(progress_bar):
images = images.to(device)
batch_size = images.size(0)
total_samples += batch_size
# Get image embeddings
with torch.no_grad():
image_embeddings = image_encoder(images).img_embedding
# Create prompts using findings_lists (for generation)
batch_prompts = [
f"Findings: {', '.join(findings) if findings else 'No Findings'}."
for findings in findings_lists
]
# Use findings_texts (actual findings) for alignment
actual_findings = findings_texts
# Mixed precision training
with autocast():
# Alignment phase
projected_image, projected_text = alignment_model(image_embeddings, actual_findings)
# Contrastive loss
labels = torch.ones(batch_size).to(device)
align_loss = contrastive_loss(projected_image, projected_text, labels)
align_loss = align_loss / gradient_accumulation_steps
# Scale and accumulate alignment gradients
scaler.scale(align_loss).backward()
# Generation phase
# Tokenize the prompts
prompt_encoding = report_generator.tokenizer(
batch_prompts,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
# Tokenize target texts (actual findings)
target_encoding = report_generator.tokenizer(
actual_findings,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
with autocast():
gen_loss, _ = report_generator(
image_embeddings=image_embeddings.detach(),
prompt_input_ids=prompt_encoding['input_ids'],
target_ids=target_encoding['input_ids']
)
gen_loss = gen_loss / gradient_accumulation_steps
# Scale and accumulate generator gradients
scaler.scale(gen_loss).backward()
# Update metrics
total_align_loss += align_loss.item() * gradient_accumulation_steps * batch_size
total_gen_loss += gen_loss.item() * gradient_accumulation_steps * batch_size
total_train_loss += (align_loss.item() + gen_loss.item()) * gradient_accumulation_steps * batch_size
# Step optimizers and schedulers
if (batch_idx + 1) % gradient_accumulation_steps == 0:
# Unscale gradients
scaler.unscale_(alignment_optimizer)
scaler.unscale_(generator_optimizer)
# Clip gradients
torch.nn.utils.clip_grad_norm_(
alignment_model.parameters(), max_grad_norm
)
torch.nn.utils.clip_grad_norm_(
report_generator.parameters(), max_grad_norm
)
# Step optimizers
scaler.step(alignment_optimizer)
scaler.step(generator_optimizer)
scaler.update()
# Zero gradients
alignment_optimizer.zero_grad()
generator_optimizer.zero_grad()
# Step schedulers
alignment_scheduler.step()
generator_scheduler.step()
# Update progress bar
progress_bar.set_postfix({
'align_loss': f"{align_loss.item():.4f}",
'gen_loss': f"{gen_loss.item():.4f}"
})
epoch_align_loss = total_align_loss / total_samples
epoch_gen_loss = total_gen_loss / total_samples
epoch_train_loss = total_train_loss / total_samples
return {
'train_loss': epoch_train_loss,
'train_align_loss': epoch_align_loss,
'train_gen_loss': epoch_gen_loss,
}
def validate_epoch(image_encoder, alignment_model, report_generator, val_loader,
contrastive_loss, device, epoch):
alignment_model.eval()
report_generator.eval()
image_encoder.eval()
# Metrics storage
total_val_loss = 0.0
total_align_loss = 0.0
total_gen_loss = 0.0
total_samples = 0
all_generated = []
all_references = []
with torch.no_grad():
progress_bar = tqdm(val_loader, desc=f'Validation Epoch {epoch}')
for batch_idx, (images, findings_texts, findings_lists) in enumerate(progress_bar):
images = images.to(device)
batch_size = images.size(0)
total_samples += batch_size
# Get image embeddings
image_embeddings = image_encoder(images).img_embedding
# Create prompts using findings_lists
batch_prompts = [
f"Findings: {', '.join(findings) if findings else 'No Findings'}."
for findings in findings_lists
]
# Actual findings for alignment and reference
actual_findings = findings_texts
# Alignment phase
projected_image, projected_text = alignment_model(image_embeddings, actual_findings)
labels = torch.ones(batch_size).to(device)
align_loss = contrastive_loss(projected_image, projected_text, labels)
# Generation phase
prompt_encoding = report_generator.tokenizer(
batch_prompts,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
target_encoding = report_generator.tokenizer(
actual_findings,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
# Compute generation loss
gen_loss, _ = report_generator(
image_embeddings=image_embeddings,
prompt_input_ids=prompt_encoding['input_ids'],
target_ids=target_encoding['input_ids']
)
# Generate text for evaluation
generated_texts = report_generator(
image_embeddings=image_embeddings,
prompt_input_ids=prompt_encoding['input_ids'],
target_ids=None
)
# Store the generated and reference texts for ROUGE calculation
all_generated.extend(generated_texts)
all_references.extend(actual_findings)
# Update totals
total_align_loss += align_loss.item() * batch_size
total_gen_loss += gen_loss.item() * batch_size
total_val_loss += (align_loss.item() + gen_loss.item()) * batch_size
# Print sample generation
if batch_idx % 10 == 0:
print(f"\nSample Generation (Batch {batch_idx}):")
print(f"Generated: {generated_texts[0]}")
print(f"Reference: {actual_findings[0]}")
# Also display the pathologies findings from findings_lists
print(f"Pathologies/Findings List: {findings_lists[0]}\n")
# Calculate overall metrics
epoch_align_loss = total_align_loss / total_samples
epoch_gen_loss = total_gen_loss / total_samples
epoch_val_loss = total_val_loss / total_samples
# Compute ROUGE-L
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
rouge_l_scores = []
for ref, gen in zip(all_references, all_generated):
score = scorer.score(ref, gen)['rougeL'].fmeasure
rouge_l_scores.append(score)
avg_rouge_l = sum(rouge_l_scores) / len(rouge_l_scores) if rouge_l_scores else 0.0
# Display validation losses and ROUGE-L
print(f"\nEpoch {epoch} Validation Metrics:")
print(f"Validation Loss: {epoch_val_loss:.4f}")
print(f"Alignment Loss: {epoch_align_loss:.4f}")
print(f"Generation Loss: {epoch_gen_loss:.4f}")
print(f"ROUGE-L: {avg_rouge_l:.4f}")
return {
'val_loss': epoch_val_loss,
'val_align_loss': epoch_align_loss,
'val_gen_loss': epoch_gen_loss,
'val_rouge_l': avg_rouge_l
}
def train_model(
csv_with_image_paths: str,
csv_with_labels: str,
num_epochs: int = 30,
batch_size: int = 8,
train_split: float = 0.85,
num_workers: int = 4,
learning_rate: float = 2e-4,
warmup_steps: int = 1000,
gradient_accumulation_steps: int = 4,
max_grad_norm: float = 1.0,
use_wandb: bool = True,
checkpoint_dir: str = "checkpoints",
seed: int = 42
):
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize models
image_encoder = get_biovil_t_image_encoder()
alignment_model = ImageTextAlignmentModel(image_embedding_dim=512)
report_generator = MedicalReportGenerator(image_embedding_dim=512)
# Move models to device
image_encoder = image_encoder.to(device)
alignment_model = alignment_model.to(device)
report_generator = report_generator.to(device)
# Initialize wandb
if use_wandb:
wandb.init(
project="medical-report-generation",
config={
"learning_rate": learning_rate,
"epochs": num_epochs,
"batch_size": batch_size,
"warmup_steps": warmup_steps,
"gradient_accumulation_steps": gradient_accumulation_steps,
}
)
wandb.watch(models=[alignment_model, report_generator], log="all")
# Get dataloaders
train_loader, val_loader = data_processing.get_dataloaders(
csv_with_image_paths=csv_with_image_paths,
csv_with_labels=csv_with_labels,
batch_size=batch_size,
train_split=train_split,
num_workers=num_workers,
seed=seed,
)
# Initialize optimizers
alignment_optimizer = AdamW(
alignment_model.parameters(),
lr=learning_rate,
weight_decay=0.01
)
generator_optimizer = AdamW([
{'params': report_generator.model.parameters(), 'lr': learning_rate},
{'params': report_generator.image_projection.parameters(), 'lr': learning_rate * 10}
])
# Initialize schedulers
num_training_steps = len(train_loader) * num_epochs // gradient_accumulation_steps
alignment_scheduler = get_linear_schedule_with_warmup(
alignment_optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps
)
generator_scheduler = get_linear_schedule_with_warmup(
generator_optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps
)
# Initialize loss function and scaler
contrastive_loss = nn.CosineEmbeddingLoss()
scaler = GradScaler()
# Create checkpoint directory
checkpoint_dir = Path(checkpoint_dir)
checkpoint_dir.mkdir(parents=True, exist_ok=True)
for epoch in range(num_epochs):
print(f"\nEpoch {epoch + 1}/{num_epochs}")
# Training phase
train_metrics = train_epoch(
image_encoder=image_encoder,
alignment_model=alignment_model,
report_generator=report_generator,
train_loader=train_loader,
contrastive_loss=contrastive_loss,
alignment_optimizer=alignment_optimizer,
generator_optimizer=generator_optimizer,
alignment_scheduler=alignment_scheduler,
generator_scheduler=generator_scheduler,
scaler=scaler,
device=device,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grad_norm=max_grad_norm,
epoch=epoch + 1
)
# Validation phase
val_metrics = validate_epoch(
image_encoder=image_encoder,
alignment_model=alignment_model,
report_generator=report_generator,
val_loader=val_loader,
contrastive_loss=contrastive_loss,
device=device,
epoch=epoch + 1
)
# Display training and validation losses
print(f"\nEpoch {epoch + 1} Training Loss: {train_metrics['train_loss']:.4f}")
print(f"Epoch {epoch + 1} Validation Loss: {val_metrics['val_loss']:.4f}")
print(f"Alignment Loss - Train: {train_metrics['train_align_loss']:.4f}, Val: {val_metrics['val_align_loss']:.4f}")
print(f"Generation Loss - Train: {train_metrics['train_gen_loss']:.4f}, Val: {val_metrics['val_gen_loss']:.4f}")
print(f"ROUGE-L (Val): {val_metrics['val_rouge_l']:.4f}")
# Log metrics to wandb
if use_wandb:
wandb.log({**train_metrics, **val_metrics})
# Save model checkpoint after each epoch
checkpoint_save_path = checkpoint_dir / f"model_epoch_{epoch+1}.pt"
torch.save({
'epoch': epoch + 1,
'image_encoder_state_dict': image_encoder.state_dict(),
'alignment_model_state_dict': alignment_model.state_dict(),
'report_generator_state_dict': report_generator.state_dict(),
'alignment_optimizer_state_dict': alignment_optimizer.state_dict(),
'generator_optimizer_state_dict': generator_optimizer.state_dict(),
'alignment_scheduler_state_dict': alignment_scheduler.state_dict(),
'generator_scheduler_state_dict': generator_scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'config': {
'learning_rate': learning_rate,
'batch_size': batch_size,
'gradient_accumulation_steps': gradient_accumulation_steps,
'max_grad_norm': max_grad_norm,
}
}, checkpoint_save_path)
logging.info(f"Saved checkpoint: {checkpoint_save_path}")
if use_wandb:
wandb.finish()
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Path to your CSV files
csv_with_image_paths = "/home/ubuntu/NLP/NLP_Project/Temp_3_NLP/Data/final.csv"
csv_with_labels = "/home/ubuntu/NLP/NLP_Project/Temp_3_NLP/Data/labeled_reports_with_images.csv"
# Training configuration
config = {
'num_epochs': 30,
'batch_size': 8,
'learning_rate': 1e-4,
'warmup_steps': 1000,
'gradient_accumulation_steps': 4,
'use_wandb': True,
'checkpoint_dir': 'checkpoints',
'seed': 42
}
# Start training
train_model(
csv_with_image_paths=csv_with_image_paths,
csv_with_labels=csv_with_labels,
**config
)