import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import logging
import wandb
from pathlib import Path
from typing import Dict, Any
from torch.cuda.amp import autocast, GradScaler
from datetime import datetime
from data2 import data_processing
from alignment_model import ImageTextAlignmentModel
from report_generator import MedicalReportGenerator
from biovil_t.pretrained import get_biovil_t_image_encoder # Ensure this import path is correct
from rouge_score import rouge_scorer
def train_epoch(image_encoder, alignment_model, report_generator, train_loader,
contrastive_loss, alignment_optimizer, generator_optimizer,
alignment_scheduler, generator_scheduler, scaler, device,
gradient_accumulation_steps, max_grad_norm, epoch):
alignment_model.train()
report_generator.train()
image_encoder.eval()
# Metrics tracking
total_train_loss = 0.0
total_align_loss = 0.0
total_gen_loss = 0.0
total_samples = 0
progress_bar = tqdm(train_loader, desc=f'Training Epoch {epoch}')
for batch_idx, (images, findings_texts, findings_lists) in enumerate(progress_bar):
images = images.to(device)
batch_size = images.size(0)
total_samples += batch_size
# Get image embeddings
with torch.no_grad():
image_embeddings = image_encoder(images).img_embedding
# Create prompts using findings_lists (for generation)
batch_prompts = [
f"Findings: {', '.join(findings) if findings else 'No Findings'}."
for findings in findings_lists
]
# Use findings_texts (actual findings) for alignment
actual_findings = findings_texts
# Mixed precision training
with autocast():
# Alignment phase
projected_image, projected_text = alignment_model(image_embeddings, actual_findings)
# Contrastive loss
labels = torch.ones(batch_size).to(device)
align_loss = contrastive_loss(projected_image, projected_text, labels)
align_loss = align_loss / gradient_accumulation_steps
# Scale and accumulate alignment gradients
scaler.scale(align_loss).backward()
# Generation phase
# Tokenize the prompts
prompt_encoding = report_generator.tokenizer(
batch_prompts,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
# Tokenize target texts (actual findings)
target_encoding = report_generator.tokenizer(
actual_findings,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
with autocast():
gen_loss, _ = report_generator(
image_embeddings=image_embeddings.detach(),
prompt_input_ids=prompt_encoding['input_ids'],
target_ids=target_encoding['input_ids']
)
gen_loss = gen_loss / gradient_accumulation_steps
# Scale and accumulate generator gradients
scaler.scale(gen_loss).backward()
# Update metrics
total_align_loss += align_loss.item() * gradient_accumulation_steps * batch_size
total_gen_loss += gen_loss.item() * gradient_accumulation_steps * batch_size
total_train_loss += (align_loss.item() + gen_loss.item()) * gradient_accumulation_steps * batch_size
# Step optimizers and schedulers
if (batch_idx + 1) % gradient_accumulation_steps == 0:
# Unscale gradients
scaler.unscale_(alignment_optimizer)
scaler.unscale_(generator_optimizer)
# Clip gradients
torch.nn.utils.clip_grad_norm_(
alignment_model.parameters(), max_grad_norm
)
torch.nn.utils.clip_grad_norm_(
report_generator.parameters(), max_grad_norm
)
# Step optimizers
scaler.step(alignment_optimizer)
scaler.step(generator_optimizer)
scaler.update()
# Zero gradients
alignment_optimizer.zero_grad()
generator_optimizer.zero_grad()
# Step schedulers
alignment_scheduler.step()
generator_scheduler.step()
# Update progress bar
progress_bar.set_postfix({
'align_loss': f"{align_loss.item():.4f}",
'gen_loss': f"{gen_loss.item():.4f}"
})
epoch_align_loss = total_align_loss / total_samples
epoch_gen_loss = total_gen_loss / total_samples
epoch_train_loss = total_train_loss / total_samples
return {
'train_loss': epoch_train_loss,
'train_align_loss': epoch_align_loss,
'train_gen_loss': epoch_gen_loss,
}
def validate_epoch(image_encoder, alignment_model, report_generator, val_loader,
contrastive_loss, device, epoch):
alignment_model.eval()
report_generator.eval()
image_encoder.eval()
# Metrics storage
total_val_loss = 0.0
total_align_loss = 0.0
total_gen_loss = 0.0
total_samples = 0
all_generated = []
all_references = []
with torch.no_grad():
progress_bar = tqdm(val_loader, desc=f'Validation Epoch {epoch}')
for batch_idx, (images, findings_texts, findings_lists) in enumerate(progress_bar):
images = images.to(device)
batch_size = images.size(0)
total_samples += batch_size
# Get image embeddings
image_embeddings = image_encoder(images).img_embedding
# Create prompts using findings_lists
batch_prompts = [
f"Findings: {', '.join(findings) if findings else 'No Findings'}."
for findings in findings_lists
]
# Actual findings for alignment and reference
actual_findings = findings_texts
# Alignment phase
projected_image, projected_text = alignment_model(image_embeddings, actual_findings)
labels = torch.ones(batch_size).to(device)
align_loss = contrastive_loss(projected_image, projected_text, labels)
# Generation phase
prompt_encoding = report_generator.tokenizer(
batch_prompts,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
target_encoding = report_generator.tokenizer(
actual_findings,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(device)
# Compute generation loss
gen_loss, _ = report_generator(
image_embeddings=image_embeddings,
prompt_input_ids=prompt_encoding['input_ids'],
target_ids=target_encoding['input_ids']
)
# Generate text for evaluation
generated_texts = report_generator(
image_embeddings=image_embeddings,
prompt_input_ids=prompt_encoding['input_ids'],
target_ids=None
)
# Store the generated and reference texts for ROUGE calculation
all_generated.extend(generated_texts)
all_references.extend(actual_findings)
# Update totals
total_align_loss += align_loss.item() * batch_size
total_gen_loss += gen_loss.item() * batch_size
total_val_loss += (align_loss.item() + gen_loss.item()) * batch_size
# Print sample generation
if batch_idx % 10 == 0:
print(f"\nSample Generation (Batch {batch_idx}):")
print(f"Generated: {generated_texts[0]}")
print(f"Reference: {actual_findings[0]}")
# Also display the pathologies findings from findings_lists
print(f"Pathologies/Findings List: {findings_lists[0]}\n")
# Calculate overall metrics
epoch_align_loss = total_align_loss / total_samples
epoch_gen_loss = total_gen_loss / total_samples
epoch_val_loss = total_val_loss / total_samples
# Compute ROUGE-L
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
rouge_l_scores = []
for ref, gen in zip(all_references, all_generated):
score = scorer.score(ref, gen)['rougeL'].fmeasure
rouge_l_scores.append(score)
avg_rouge_l = sum(rouge_l_scores) / len(rouge_l_scores) if rouge_l_scores else 0.0
# Display validation losses and ROUGE-L
print(f"\nEpoch {epoch} Validation Metrics:")
print(f"Validation Loss: {epoch_val_loss:.4f}")
print(f"Alignment Loss: {epoch_align_loss:.4f}")
print(f"Generation Loss: {epoch_gen_loss:.4f}")
print(f"ROUGE-L: {avg_rouge_l:.4f}")
return {
'val_loss': epoch_val_loss,
'val_align_loss': epoch_align_loss,
'val_gen_loss': epoch_gen_loss,
'val_rouge_l': avg_rouge_l
}
def train_model(
csv_with_image_paths: str,
csv_with_labels: str,
num_epochs: int = 30,
batch_size: int = 8,
train_split: float = 0.85,
num_workers: int = 4,
learning_rate: float = 2e-4,
warmup_steps: int = 1000,
gradient_accumulation_steps: int = 4,
max_grad_norm: float = 1.0,
use_wandb: bool = True,
checkpoint_dir: str = "checkpoints",
seed: int = 42
):
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize models
image_encoder = get_biovil_t_image_encoder()
alignment_model = ImageTextAlignmentModel(image_embedding_dim=512)
report_generator = MedicalReportGenerator(image_embedding_dim=512)
# Move models to device
image_encoder = image_encoder.to(device)
alignment_model = alignment_model.to(device)
report_generator = report_generator.to(device)
# Initialize wandb
if use_wandb:
wandb.init(
project="medical-report-generation",
config={
"learning_rate": learning_rate,
"epochs": num_epochs,
"batch_size": batch_size,
"warmup_steps": warmup_steps,
"gradient_accumulation_steps": gradient_accumulation_steps,
}
)
wandb.watch(models=[alignment_model, report_generator], log="all")
# Get dataloaders
train_loader, val_loader = data_processing.get_dataloaders(
csv_with_image_paths=csv_with_image_paths,
csv_with_labels=csv_with_labels,
batch_size=batch_size,
train_split=train_split,
num_workers=num_workers,
seed=seed,
)
# Initialize optimizers
alignment_optimizer = AdamW(
alignment_model.parameters(),
lr=learning_rate,
weight_decay=0.01
)
generator_optimizer = AdamW([
{'params': report_generator.model.parameters(), 'lr': learning_rate},
{'params': report_generator.image_projection.parameters(), 'lr': learning_rate * 10}
])
# Initialize schedulers
num_training_steps = len(train_loader) * num_epochs // gradient_accumulation_steps
alignment_scheduler = get_linear_schedule_with_warmup(
alignment_optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps
)
generator_scheduler = get_linear_schedule_with_warmup(
generator_optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps
)
# Initialize loss function and scaler
contrastive_loss = nn.CosineEmbeddingLoss()
scaler = GradScaler()
# Create checkpoint directory
checkpoint_dir = Path(checkpoint_dir)
checkpoint_dir.mkdir(parents=True, exist_ok=True)
for epoch in range(num_epochs):
print(f"\nEpoch {epoch + 1}/{num_epochs}")
# Training phase
train_metrics = train_epoch(
image_encoder=image_encoder,
alignment_model=alignment_model,
report_generator=report_generator,
train_loader=train_loader,
contrastive_loss=contrastive_loss,
alignment_optimizer=alignment_optimizer,
generator_optimizer=generator_optimizer,
alignment_scheduler=alignment_scheduler,
generator_scheduler=generator_scheduler,
scaler=scaler,
device=device,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grad_norm=max_grad_norm,
epoch=epoch + 1
)
# Validation phase
val_metrics = validate_epoch(
image_encoder=image_encoder,
alignment_model=alignment_model,
report_generator=report_generator,
val_loader=val_loader,
contrastive_loss=contrastive_loss,
device=device,
epoch=epoch + 1
)
# Display training and validation losses
print(f"\nEpoch {epoch + 1} Training Loss: {train_metrics['train_loss']:.4f}")
print(f"Epoch {epoch + 1} Validation Loss: {val_metrics['val_loss']:.4f}")
print(f"Alignment Loss - Train: {train_metrics['train_align_loss']:.4f}, Val: {val_metrics['val_align_loss']:.4f}")
print(f"Generation Loss - Train: {train_metrics['train_gen_loss']:.4f}, Val: {val_metrics['val_gen_loss']:.4f}")
print(f"ROUGE-L (Val): {val_metrics['val_rouge_l']:.4f}")
# Log metrics to wandb
if use_wandb:
wandb.log({**train_metrics, **val_metrics})
# Save model checkpoint after each epoch
checkpoint_save_path = checkpoint_dir / f"model_epoch_{epoch+1}.pt"
torch.save({
'epoch': epoch + 1,
'image_encoder_state_dict': image_encoder.state_dict(),
'alignment_model_state_dict': alignment_model.state_dict(),
'report_generator_state_dict': report_generator.state_dict(),
'alignment_optimizer_state_dict': alignment_optimizer.state_dict(),
'generator_optimizer_state_dict': generator_optimizer.state_dict(),
'alignment_scheduler_state_dict': alignment_scheduler.state_dict(),
'generator_scheduler_state_dict': generator_scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'config': {
'learning_rate': learning_rate,
'batch_size': batch_size,
'gradient_accumulation_steps': gradient_accumulation_steps,
'max_grad_norm': max_grad_norm,
}
}, checkpoint_save_path)
logging.info(f"Saved checkpoint: {checkpoint_save_path}")
if use_wandb:
wandb.finish()
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Path to your CSV files
csv_with_image_paths = "/home/ubuntu/NLP/NLP_Project/Temp_3_NLP/Data/final.csv"
csv_with_labels = "/home/ubuntu/NLP/NLP_Project/Temp_3_NLP/Data/labeled_reports_with_images.csv"
# Training configuration
config = {
'num_epochs': 30,
'batch_size': 8,
'learning_rate': 1e-4,
'warmup_steps': 1000,
'gradient_accumulation_steps': 4,
'use_wandb': True,
'checkpoint_dir': 'checkpoints',
'seed': 42
}
# Start training
train_model(
csv_with_image_paths=csv_with_image_paths,
csv_with_labels=csv_with_labels,
**config
)