[27805f]: / CheXbert / src / utils.py

Download this file

381 lines (315 with data), 15.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import copy
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import json
from models.bert_labeler import bert_labeler
from bert_tokenizer import tokenize
from sklearn.metrics import f1_score, confusion_matrix
from statsmodels.stats.inter_rater import cohens_kappa
from transformers import BertTokenizer
from constants import *
def get_weighted_f1_weights(train_path_or_csv):
"""Compute weights used to obtain the weighted average of
mention, negation and uncertain f1 scores.
@param train_path_or_csv: A path to the csv file or a dataframe
@return weight_dict (dictionary): maps conditions to a list of weights, the order
in the lists is negation, uncertain, positive
"""
if isinstance(train_path_or_csv, str):
df = pd.read_csv(train_path_or_csv)
else:
df = train_path_or_csv
df.replace(0, 2, inplace=True)
df.replace(-1, 3, inplace=True)
df.fillna(0, inplace=True)
weight_dict = {}
for cond in CONDITIONS:
weights = []
col = df[cond]
mask = col == 2
weights.append(mask.sum())
mask = col == 3
weights.append(mask.sum())
mask = col == 1
weights.append(mask.sum())
if np.sum(weights) > 0:
weights = np.array(weights)/np.sum(weights)
weight_dict[cond] = weights
return weight_dict
def weighted_avg(scores, weights):
"""Compute weighted average of scores
@param scores(List): the task scores
@param weights (List): corresponding normalized weights
@return (float): the weighted average of task scores
"""
return np.sum(np.array(scores) * np.array(weights))
def compute_train_weights(train_path):
"""Compute class weights for rebalancing rare classes
@param train_path (str): A path to the training csv file
@returns weight_arr (torch.Tensor): Tensor of shape (train_set_size), containing
the weight assigned to each training example
"""
df = pd.read_csv(train_path)
cond_weights = {}
for cond in CONDITIONS:
col = df[cond]
val_counts = col.value_counts()
if cond != 'No Finding':
weights = {}
weights['0.0'] = len(df) / val_counts[0]
weights['-1.0'] = len(df) / val_counts[-1]
weights['1.0'] = len(df) / val_counts[1]
weights['nan'] = len(df) / (len(df) - val_counts.sum())
else:
weights = {}
weights['1.0'] = len(df) / val_counts[1]
weights['nan'] = len(df) / (len(df) - val_counts.sum())
cond_weights[cond] = weights
weight_arr = torch.zeros(len(df))
for i in range(len(df)): #loop over training set
for cond in CONDITIONS: #loop over all conditions
label = str(df[cond].iloc[i])
weight_arr[i] += cond_weights[cond][label] #add weight for given class' label
return weight_arr
def generate_attention_masks(batch, source_lengths, device):
"""Generate masks for padded batches to avoid self-attention over pad tokens
@param batch (Tensor): tensor of token indices of shape (batch_size, max_len)
where max_len is length of longest sequence in the batch
@param source_lengths (List[Int]): List of actual lengths for each of the
sequences in the batch
@param device (torch.device): device on which data should be
@returns masks (Tensor): Tensor of masks of shape (batch_size, max_len)
"""
masks = torch.ones(batch.size(0), batch.size(1), dtype=torch.float)
for idx, src_len in enumerate(source_lengths):
masks[idx, src_len:] = 0
return masks.to(device)
def compute_mention_f1(y_true, y_pred):
"""Compute the mention F1 score as in CheXpert paper
@param y_true (list): List of 14 tensors each of shape (dev_set_size)
@param y_pred (list): Same as y_true but for model predictions
@returns res (list): List of 14 scalars
"""
for j in range(len(y_true)):
y_true[j][y_true[j] == 2] = 1
y_true[j][y_true[j] == 3] = 1
y_pred[j][y_pred[j] == 2] = 1
y_pred[j][y_pred[j] == 3] = 1
res = []
for j in range(len(y_true)):
res.append(f1_score(y_true[j], y_pred[j], pos_label=1))
return res
def compute_blank_f1(y_true, y_pred):
"""Compute the blank F1 score
@param y_true (list): List of 14 tensors each of shape (dev_set_size)
@param y_pred (list): Same as y_true but for model predictions
@returns res (list): List of 14 scalars
"""
for j in range(len(y_true)):
y_true[j][y_true[j] == 2] = 1
y_true[j][y_true[j] == 3] = 1
y_pred[j][y_pred[j] == 2] = 1
y_pred[j][y_pred[j] == 3] = 1
res = []
for j in range(len(y_true)):
res.append(f1_score(y_true[j], y_pred[j], pos_label=0))
return res
def compute_negation_f1(y_true, y_pred):
"""Compute the negation F1 score as in CheXpert paper
@param y_true (list): List of 14 tensors each of shape (dev_set_size)
@param y_pred (list): Same as y_true but for model predictions
@returns res (list): List of 14 scalars
"""
for j in range(len(y_true)):
y_true[j][y_true[j] == 3] = 0
y_true[j][y_true[j] == 1] = 0
y_pred[j][y_pred[j] == 3] = 0
y_pred[j][y_pred[j] == 1] = 0
res = []
for j in range(len(y_true)-1):
res.append(f1_score(y_true[j], y_pred[j], pos_label=2))
res.append(0) #No Finding gets score of zero
return res
def compute_positive_f1(y_true, y_pred):
"""Compute the positive F1 score
@param y_true (list): List of 14 tensors each of shape (dev_set_size)
@param y_pred (list): Same as y_true but for model predictions
@returns res (list): List of 14 scalars
"""
for j in range(len(y_true)):
y_true[j][y_true[j] == 3] = 0
y_true[j][y_true[j] == 2] = 0
y_pred[j][y_pred[j] == 3] = 0
y_pred[j][y_pred[j] == 2] = 0
res = []
for j in range(len(y_true)):
res.append(f1_score(y_true[j], y_pred[j], pos_label=1))
return res
def compute_uncertain_f1(y_true, y_pred):
"""Compute the negation F1 score as in CheXpert paper
@param y_true (list): List of 14 tensors each of shape (dev_set_size)
@param y_pred (list): Same as y_true but for model predictions
@returns res (list): List of 14 scalars
"""
for j in range(len(y_true)):
y_true[j][y_true[j] == 2] = 0
y_true[j][y_true[j] == 1] = 0
y_pred[j][y_pred[j] == 2] = 0
y_pred[j][y_pred[j] == 1] = 0
res = []
for j in range(len(y_true)-1):
res.append(f1_score(y_true[j], y_pred[j], pos_label=3))
res.append(0) #No Finding gets a score of zero
return res
def evaluate(model, dev_loader, device, f1_weights, return_pred=False):
""" Function to evaluate the current model weights
@param model (nn.Module): the labeler module
@param dev_loader (torch.utils.data.DataLoader): dataloader for dev set
@param device (torch.device): device on which data should be
@param f1_weights (dictionary): dictionary mapping conditions to f1
task weights
@param return_pred (bool): whether to return predictions or not
@returns res_dict (dictionary): dictionary with keys 'blank', 'mention', 'negation',
'uncertain', 'positive' and 'weighted', with values
being lists of length 14 with each element in the
lists as a scalar. If return_pred is true then a
tuple is returned with the aforementioned dictionary
as the first item, a list of predictions as the
second item, and a list of ground truth as the
third item
"""
was_training = model.training
model.eval()
y_pred = [[] for _ in range(len(CONDITIONS))]
y_true = [[] for _ in range(len(CONDITIONS))]
with torch.no_grad():
for i, data in enumerate(dev_loader, 0):
batch = data['imp'] #(batch_size, max_len)
batch = batch.to(device)
label = data['label'] #(batch_size, 14)
label = label.permute(1, 0).to(device)
src_len = data['len']
batch_size = batch.shape[0]
attn_mask = generate_attention_masks(batch, src_len, device)
out = model(batch, attn_mask)
for j in range(len(out)):
out[j] = out[j].to('cpu') #move to cpu for sklearn
curr_y_pred = out[j].argmax(dim=1) #shape is (batch_size)
y_pred[j].append(curr_y_pred)
y_true[j].append(label[j].to('cpu'))
if (i+1) % 200 == 0:
print('Evaluation batch no: ', i+1)
for j in range(len(y_true)):
y_true[j] = torch.cat(y_true[j], dim=0)
y_pred[j] = torch.cat(y_pred[j], dim=0)
if was_training:
model.train()
mention_f1 = compute_mention_f1(copy.deepcopy(y_true), copy.deepcopy(y_pred))
negation_f1 = compute_negation_f1(copy.deepcopy(y_true), copy.deepcopy(y_pred))
uncertain_f1 = compute_uncertain_f1(copy.deepcopy(y_true), copy.deepcopy(y_pred))
positive_f1 = compute_positive_f1(copy.deepcopy(y_true), copy.deepcopy(y_pred))
blank_f1 = compute_blank_f1(copy.deepcopy(y_true), copy.deepcopy(y_pred))
weighted = []
kappas = []
for j in range(len(y_pred)):
cond = CONDITIONS[j]
avg = weighted_avg([negation_f1[j], uncertain_f1[j], positive_f1[j]], f1_weights[cond])
weighted.append(avg)
mat = confusion_matrix(y_true[j], y_pred[j])
kappas.append(cohens_kappa(mat, return_results=False))
res_dict = {'mention': mention_f1,
'blank': blank_f1,
'negation': negation_f1,
'uncertain': uncertain_f1,
'positive': positive_f1,
'weighted': weighted,
'kappa': kappas}
if return_pred:
return res_dict, y_pred, y_true
else:
return res_dict
def test(model, checkpoint_path, test_ld, f1_weights):
"""Evaluate model on test set.
@param model (nn.Module): labeler module
@param checkpoint_path (string): location of saved model checkpoint
@param test_ld (dataloader): dataloader for test set
@param f1_weights (dictionary): maps conditions to f1 task weights
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model) #to utilize multiple GPU's
model = model.to(device)
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'])
print("Doing evaluation on test set\n")
metrics = evaluate(model, test_ld, device, f1_weights)
weighted = metrics['weighted']
kappas = metrics['kappa']
for j in range(len(CONDITIONS)):
print('%s kappa: %.3f' % (CONDITIONS[j], kappas[j]))
print('average: %.3f' % np.mean(kappas))
print()
for j in range(len(CONDITIONS)):
print('%s weighted_f1: %.3f' % (CONDITIONS[j], weighted[j]))
print('average of weighted_f1: %.3f' % (np.mean(weighted)))
print()
for j in range(len(CONDITIONS)):
print('%s blank_f1: %.3f, negation_f1: %.3f, uncertain_f1: %.3f, positive_f1: %.3f' % (CONDITIONS[j],
metrics['blank'][j],
metrics['negation'][j],
metrics['uncertain'][j],
metrics['positive'][j]))
men_macro_avg = np.mean(metrics['mention'])
neg_macro_avg = np.mean(metrics['negation'][:-1]) #No Finding has no negations
unc_macro_avg = np.mean(metrics['uncertain'][:-2]) #No Finding, Support Devices have no uncertain labels in test set
pos_macro_avg = np.mean(metrics['positive'])
blank_macro_avg = np.mean(metrics['blank'])
print("blank macro avg: %.3f, negation macro avg: %.3f, uncertain macro avg: %.3f, positive macro avg: %.3f" % (blank_macro_avg,
neg_macro_avg,
unc_macro_avg,
pos_macro_avg))
print()
for j in range(len(CONDITIONS)):
print('%s mention_f1: %.3f' % (CONDITIONS[j], metrics['mention'][j]))
print('mention macro avg: %.3f' % men_macro_avg)
def label_report_list(checkpoint_path, report_list):
""" Evaluate model on list of reports.
@param checkpoint_path (string): location of saved model checkpoint
@param report_list (list): list of report impressions (string)
"""
imp = pd.Series(report_list)
imp = imp.str.strip()
imp = imp.replace('\n',' ', regex=True)
imp = imp.replace('[0-9]\.', '', regex=True)
imp = imp.replace('\s+', ' ', regex=True)
imp = imp.str.strip()
model = bert_labeler()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model) #to utilize multiple GPU's
model = model.to(device)
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
y_pred = []
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
new_imps = tokenize(imp, tokenizer)
with torch.no_grad():
for imp in new_imps:
# run forward prop
imp = torch.LongTensor(imp)
source = imp.view(1, len(imp))
attention = torch.ones(len(imp))
attention = attention.view(1, len(imp))
out = model(source.to(device), attention.to(device))
# get predictions
result = {}
for j in range(len(out)):
curr_y_pred = out[j].argmax(dim=1) #shape is (1)
result[CONDITIONS[j]] = CLASS_MAPPING[curr_y_pred.item()]
y_pred.append(result)
return y_pred