import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import os
from tqdm import tqdm
import numpy as np
from sklearn.metrics import roc_auc_score
from read_data import ChestXrayDataSet
import torchvision
class ModifiedCheXNet(nn.Module):
def __init__(self, num_classes=14, pretrained_path=None):
super(ModifiedCheXNet, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
if pretrained_path and os.path.exists(pretrained_path):
print("=> Loading pretrained CheXNet weights")
checkpoint = torch.load(pretrained_path)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
# Remove 'module.' prefix and fix layer names
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
k = k[7:] # Remove 'module.' prefix
# Replace dots with underscores in layer names
k = k.replace('conv.1', 'conv1')
k = k.replace('conv.2', 'conv2')
k = k.replace('norm.1', 'norm1')
k = k.replace('norm.2', 'norm2')
new_state_dict[k] = v
# Load the processed state dict
try:
self.densenet121.load_state_dict(new_state_dict, strict=False)
print("Successfully loaded pretrained weights")
except RuntimeError as e:
print(f"Error loading pretrained weights: {e}")
# Freeze all layers except the last dense block and classifier
frozen_layers = [
'conv0', 'norm0', 'denseblock1', 'transition1',
'denseblock2', 'transition2', 'denseblock3', 'transition3'
]
for name, param in self.densenet121.features.named_parameters():
if any(layer in name for layer in frozen_layers):
param.requires_grad = False
# Modify the classifier
num_ftrs = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_ftrs, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, num_classes),
nn.Sigmoid()
)
def forward(self, x):
return self.densenet121(x)
def print_trainable_parameters(self):
"""Print which layers are trainable and which are frozen"""
print("\nTrainable layers:")
for name, param in self.named_parameters():
if param.requires_grad:
print(name)
print("\nFrozen layers:")
for name, param in self.named_parameters():
if not param.requires_grad:
print(name)
def train_model(model, train_loader, valid_loader, device, num_epochs=10):
criterion = nn.BCELoss()
# Different learning rates for different parts
classifier_params = list(model.densenet121.classifier.parameters())
feature_params = list(model.densenet121.features.parameters())
optimizer = optim.Adam([
{'params': classifier_params, 'lr': 1e-3},
{'params': feature_params, 'lr': 1e-5}
])
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
patience=2, factor=0.1)
best_val_auc = 0.0
for epoch in range(num_epochs):
# Training phase
model.train()
running_loss = 0.0
pbar = tqdm(train_loader, desc=f'Epoch {epoch + 1}/{num_epochs}')
for inputs, labels in pbar:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
pbar.set_postfix({'loss': f'{loss.item():.4f}'})
epoch_loss = running_loss / len(train_loader)
# Validation phase
model.eval()
val_loss = 0.0
all_labels = []
all_outputs = []
with torch.no_grad():
for inputs, labels in valid_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
all_labels.append(labels.cpu().numpy())
all_outputs.append(outputs.cpu().numpy())
val_loss = val_loss / len(valid_loader)
all_labels = np.concatenate(all_labels)
all_outputs = np.concatenate(all_outputs)
# Calculate AUC for each class
aucs = []
for i in range(all_outputs.shape[1]):
if len(np.unique(all_labels[:, i])) > 1:
auc = roc_auc_score(all_labels[:, i], all_outputs[:, i])
aucs.append(auc)
val_auc = np.mean(aucs)
scheduler.step(val_auc)
print(f'Epoch {epoch + 1}/{num_epochs}:')
print(f'Train Loss: {epoch_loss:.4f}')
print(f'Val Loss: {val_loss:.4f}, Val AUC: {val_auc:.4f}')
# Save best model
if val_auc > best_val_auc:
best_val_auc = val_auc
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'best_auc': best_val_auc,
}, 'best_chexnet_finetuned.pth')
def main():
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_dir = "split_data/images"
train_file = "split_data/train.csv"
valid_file = "split_data/valid.csv"
# Data transforms
train_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ColorJitter(brightness=0.1, contrast=0.1),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Create datasets
train_dataset = ChestXrayDataSet(
data_dir,
train_file,
train_transform
)
valid_dataset = ChestXrayDataSet(
data_dir,
valid_file,
val_transform
)
# Create data loaders
train_loader = DataLoader(
train_dataset,
batch_size=32,
shuffle=True,
num_workers=4,
pin_memory=True
)
valid_loader = DataLoader(
valid_dataset,
batch_size=32,
shuffle=False,
num_workers=4,
pin_memory=True
)
# In your main function:
model = ModifiedCheXNet(
num_classes=14,
pretrained_path='chexnet/CheXNet/model.pth.tar'
).to(device)
# Check which layers are trainable
model.print_trainable_parameters()
# Train the model
train_model(
model=model,
train_loader=train_loader,
valid_loader=valid_loader,
device=device,
num_epochs=20
)
if __name__ == '__main__':
main()