|
a |
|
b/MedicalRelationExtractor/unibiased.py |
|
|
1 |
#AUTHOR: RAHUL VERMA and SPIRO RAZIS |
|
|
2 |
import sys |
|
|
3 |
import re |
|
|
4 |
import pprint |
|
|
5 |
import numpy |
|
|
6 |
from sklearn import svm |
|
|
7 |
from sklearn import linear_model |
|
|
8 |
import time |
|
|
9 |
from random import shuffle |
|
|
10 |
|
|
|
11 |
start_time = time.time() |
|
|
12 |
|
|
|
13 |
numpy.set_printoptions(threshold=numpy.nan) |
|
|
14 |
|
|
|
15 |
def parseTextViaPMCID(textFile, pmcidFeatureList, uniqueWordsDictionary,lim): |
|
|
16 |
|
|
|
17 |
if textFile.startswith("beneficial"): |
|
|
18 |
#print("beneficial") |
|
|
19 |
fileType = "beneficial".encode('utf-8') |
|
|
20 |
elif textFile.startswith("harmful"): |
|
|
21 |
#print("harmful") |
|
|
22 |
fileType = "harmful".encode('utf-8') |
|
|
23 |
else: |
|
|
24 |
#print("invalid file name") |
|
|
25 |
sys.exit(2) |
|
|
26 |
limit = 0 |
|
|
27 |
entryCount = 0 |
|
|
28 |
disease = "" |
|
|
29 |
causeOrTreatment = "" |
|
|
30 |
relation = "" |
|
|
31 |
newEntry = False |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
with open(textFile, "r") as openedTextFile: |
|
|
35 |
for line in openedTextFile: |
|
|
36 |
if limit < lim: |
|
|
37 |
if line.startswith("pmcid : "): #it's the idNumber |
|
|
38 |
entryCount += 1 |
|
|
39 |
newEntry = True |
|
|
40 |
elif line.startswith("sentence: "): #it's a sentence |
|
|
41 |
pass |
|
|
42 |
|
|
|
43 |
elif line.startswith("entities: "): #it's the two in a relationship |
|
|
44 |
disease = line[11:line.index(",")].lower().encode('utf-8') |
|
|
45 |
causeOrTreatment = line[(line.index(",")+2):-2].lower().encode('utf-8') |
|
|
46 |
|
|
|
47 |
#add disease and cause/treatment to dictionary of unique words/phrases |
|
|
48 |
if disease not in uniqueWordsDictionary: |
|
|
49 |
uniqueWordsDictionary[disease] = {} |
|
|
50 |
if causeOrTreatment not in uniqueWordsDictionary: |
|
|
51 |
uniqueWordsDictionary[causeOrTreatment] = {} |
|
|
52 |
|
|
|
53 |
elif line.startswith("offsets : "): #the position of the entities |
|
|
54 |
pass |
|
|
55 |
elif line.startswith("relation: "): #the actual relationship |
|
|
56 |
relation = line[10:-1].lower().encode('utf-8') |
|
|
57 |
else: |
|
|
58 |
if line.startswith("\n") and (newEntry == True): |
|
|
59 |
pmcidFeatureList.append([disease, causeOrTreatment, relation, fileType]) |
|
|
60 |
disease = "" |
|
|
61 |
causeOrTreatment = "" |
|
|
62 |
relation = "" |
|
|
63 |
newEntry = False |
|
|
64 |
limit += 1 |
|
|
65 |
else: |
|
|
66 |
print("invalid line: %s" %(line)) |
|
|
67 |
sys.exit(2) |
|
|
68 |
else: break |
|
|
69 |
|
|
|
70 |
return (pmcidFeatureList, entryCount, uniqueWordsDictionary) |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
def printFeatureWithCellValue(numpyRow, featureRow): |
|
|
74 |
for index, feature in enumerate(featureRow): |
|
|
75 |
print("%s: %d" %(feature, numpyRow[index])) |
|
|
76 |
print("harmfulOrBeneficial: %d" %(numpyRow[-1])) |
|
|
77 |
return |
|
|
78 |
|
|
|
79 |
def printFeaturesWithValuesEqualOne(numpyRow, featureRow): |
|
|
80 |
for index, feature in enumerate(featureRow): |
|
|
81 |
if numpyRow[index] == 1: |
|
|
82 |
print("%s: %d" %(feature, numpyRow[index])) |
|
|
83 |
print("harmfulOrBeneficial: %d" %(numpyRow[-1])) |
|
|
84 |
return |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
def parseEntitiesIntoUnigrams(beneficialFile, harmfulFile, beneficialLimit, harmfulLimit): |
|
|
88 |
|
|
|
89 |
beneficialEntry = 0 |
|
|
90 |
harmfulEntry = 0 |
|
|
91 |
entitiesTrainingDictionary= {} |
|
|
92 |
|
|
|
93 |
entityUnigramList = [] |
|
|
94 |
|
|
|
95 |
beneficialFullEntitiesList = [] |
|
|
96 |
harmfulFullEntitiesList = [] |
|
|
97 |
|
|
|
98 |
sentenceUnigramList = [] |
|
|
99 |
|
|
|
100 |
beneficialSplitSentences = [] |
|
|
101 |
harmfulSplitSentences = [] |
|
|
102 |
|
|
|
103 |
entityUnigrams = {} |
|
|
104 |
harmfulUnigrams = {} |
|
|
105 |
beneficialUnigrams = {} |
|
|
106 |
sentenceFeatureUnigrams = {} |
|
|
107 |
|
|
|
108 |
testArrayForWritingEntries = numpy.empty(shape = (1, 1), dtype = "S128") |
|
|
109 |
|
|
|
110 |
#WORKING ON THE UNIGRAMS OF THE TRAINING BENEFICIAL ENTITIES HERE |
|
|
111 |
with open(beneficialFile, "r") as openedBeneficialFile: |
|
|
112 |
for line in openedBeneficialFile: |
|
|
113 |
if beneficialEntry < beneficialLimit: |
|
|
114 |
if line.startswith("entities: "): |
|
|
115 |
#individual entities |
|
|
116 |
disease = line[11:line.index(",")].lower().encode('utf-8') |
|
|
117 |
causeOrTreatment = line[(line.index(",")+2):-2].lower().encode('utf-8') |
|
|
118 |
if disease not in entitiesTrainingDictionary: |
|
|
119 |
entitiesTrainingDictionary[disease] = {} |
|
|
120 |
if causeOrTreatment not in entitiesTrainingDictionary: |
|
|
121 |
entitiesTrainingDictionary[causeOrTreatment] = {} |
|
|
122 |
#unigrams composing the entities |
|
|
123 |
entityUnigramList = re.split("-|, |\. |\/| ", line[11:-2].lower()) |
|
|
124 |
for entry in entityUnigramList: |
|
|
125 |
if (entry != "") and (entry not in entityUnigrams): |
|
|
126 |
entityUnigrams[entry] = {} |
|
|
127 |
beneficialEntry += 1 |
|
|
128 |
else: break |
|
|
129 |
#WORKING ON THE TRAINING HARMFUL ENTITIES HERE |
|
|
130 |
with open(harmfulFile, "r") as openedHarmfulFile: |
|
|
131 |
for line in openedHarmfulFile: |
|
|
132 |
if harmfulEntry < harmfulLimit: |
|
|
133 |
if line.startswith("entities: "): |
|
|
134 |
#individual entities |
|
|
135 |
disease = line[11:line.index(",")].lower().encode('utf-8') |
|
|
136 |
causeOrTreatment = line[(line.index(",")+2):-2].lower().encode('utf-8') |
|
|
137 |
if disease not in entitiesTrainingDictionary: |
|
|
138 |
entitiesTrainingDictionary[disease] = {} |
|
|
139 |
if causeOrTreatment not in entitiesTrainingDictionary: |
|
|
140 |
entitiesTrainingDictionary[causeOrTreatment] = {} |
|
|
141 |
entityUnigramList = re.split("-|, |\. |\/| ", line[11:-2].lower()) |
|
|
142 |
for entry in entityUnigramList: |
|
|
143 |
if (entry != "") and (entry not in entityUnigrams): |
|
|
144 |
entityUnigrams[entry] = {} |
|
|
145 |
harmfulEntry += 1 |
|
|
146 |
else: break |
|
|
147 |
|
|
|
148 |
beneficialEntry = 0 |
|
|
149 |
mostRecentPMCID = "" |
|
|
150 |
with open(beneficialFile, "r") as openedBeneficialFile: |
|
|
151 |
for line in openedBeneficialFile: |
|
|
152 |
if line.startswith("pmcid : "): #it's the pmcid line |
|
|
153 |
mostRecentPMCID = line[11:-1] |
|
|
154 |
elif line.startswith("sentence: "): |
|
|
155 |
sentenceUnigramList = re.split("\—|\-|\, |\.|\/|\(|\)|\'|\"|\[|\]|\ |\“|\”|\,|\d|\<|\>|\:|\$|\%|\*|\′", line[10:-2].lower()) |
|
|
156 |
beneficialSplitSentences.append(sentenceUnigramList) |
|
|
157 |
|
|
|
158 |
if beneficialEntry < beneficialLimit: |
|
|
159 |
for word in sentenceUnigramList: |
|
|
160 |
if (word != "") and (word not in entityUnigrams): |
|
|
161 |
if word not in sentenceFeatureUnigrams: |
|
|
162 |
try: |
|
|
163 |
testArrayForWritingEntries[0,0] = word |
|
|
164 |
sentenceFeatureUnigrams[word] = {} |
|
|
165 |
sentenceFeatureUnigrams[word]["beneficial"] = {} |
|
|
166 |
sentenceFeatureUnigrams[word]["beneficial"]["pmcid"] = {} |
|
|
167 |
sentenceFeatureUnigrams[word]["beneficial"]["pmcid"][mostRecentPMCID] = {} |
|
|
168 |
sentenceFeatureUnigrams[word]["beneficial"]["count"] = 0 |
|
|
169 |
|
|
|
170 |
sentenceFeatureUnigrams[word]["harmful"] = {} |
|
|
171 |
sentenceFeatureUnigrams[word]["harmful"]["pmcid"] = {} |
|
|
172 |
sentenceFeatureUnigrams[word]["harmful"]["count"] = 0 |
|
|
173 |
except UnicodeEncodeError: pass |
|
|
174 |
else: #it is in the feature unigrams already, so add the |
|
|
175 |
if mostRecentPMCID not in sentenceFeatureUnigrams[word]["beneficial"]["pmcid"]: #and the same pmcid isn't already there |
|
|
176 |
sentenceFeatureUnigrams[word]["beneficial"]["pmcid"][mostRecentPMCID] = {} |
|
|
177 |
|
|
|
178 |
beneficialEntry += 1 |
|
|
179 |
elif line.startswith("entities: "): |
|
|
180 |
#individual entities |
|
|
181 |
disease = line[11:line.index(",")].lower().encode('utf-8') |
|
|
182 |
causeOrTreatment = line[(line.index(",")+2):-2].lower().encode('utf-8') |
|
|
183 |
|
|
|
184 |
beneficialFullEntitiesList.append([disease, causeOrTreatment]) |
|
|
185 |
|
|
|
186 |
else: pass |
|
|
187 |
|
|
|
188 |
|
|
|
189 |
harmfulEntry = 0 |
|
|
190 |
mostRecentPMCID = "" |
|
|
191 |
with open(harmfulFile, "r") as openedHarmfulFile: |
|
|
192 |
for line in openedHarmfulFile: |
|
|
193 |
if line.startswith("pmcid : "): #it's the pmcid line |
|
|
194 |
mostRecentPMCID = line[11:-1] |
|
|
195 |
elif line.startswith("sentence: "): |
|
|
196 |
sentenceUnigramList = re.split("\—|\-|\, |\.|\/|\(|\)|\'|\"|\[|\]|\ |\“|\”|\,|\d|\<|\>|\:|\$|\%|\*|\′", line[10:-2].lower()) |
|
|
197 |
harmfulSplitSentences.append(sentenceUnigramList) |
|
|
198 |
if harmfulEntry < harmfulLimit: |
|
|
199 |
for word in sentenceUnigramList: |
|
|
200 |
if (word != "") and (word not in entityUnigrams): |
|
|
201 |
if word not in sentenceFeatureUnigrams: |
|
|
202 |
try: |
|
|
203 |
testArrayForWritingEntries[0,0] = word |
|
|
204 |
sentenceFeatureUnigrams[word] = {} |
|
|
205 |
sentenceFeatureUnigrams[word]["beneficial"] = {} |
|
|
206 |
sentenceFeatureUnigrams[word]["beneficial"]["pmcid"] = {} |
|
|
207 |
sentenceFeatureUnigrams[word]["beneficial"]["count"] = 0 |
|
|
208 |
|
|
|
209 |
sentenceFeatureUnigrams[word]["harmful"] = {} |
|
|
210 |
sentenceFeatureUnigrams[word]["harmful"]["pmcid"] = {} |
|
|
211 |
sentenceFeatureUnigrams[word]["harmful"]["pmcid"][mostRecentPMCID] = {} |
|
|
212 |
sentenceFeatureUnigrams[word]["harmful"]["count"] = 0 |
|
|
213 |
except UnicodeEncodeError: pass |
|
|
214 |
else: |
|
|
215 |
if mostRecentPMCID not in sentenceFeatureUnigrams[word]["harmful"]["pmcid"]: #and the same pmcid isn't already there |
|
|
216 |
sentenceFeatureUnigrams[word]["harmful"]["pmcid"][mostRecentPMCID] = {} |
|
|
217 |
harmfulEntry += 1 |
|
|
218 |
elif line.startswith("entities: "): |
|
|
219 |
disease = line[11:line.index(",")].lower().encode('utf-8') |
|
|
220 |
causeOrTreatment = line[(line.index(",")+2):-2].lower().encode('utf-8') |
|
|
221 |
|
|
|
222 |
harmfulFullEntitiesList.append([disease, causeOrTreatment]) |
|
|
223 |
|
|
|
224 |
else: pass |
|
|
225 |
|
|
|
226 |
|
|
|
227 |
|
|
|
228 |
|
|
|
229 |
for word in sentenceFeatureUnigrams: |
|
|
230 |
for benefitHarmfulOrEntity in sentenceFeatureUnigrams[word]: |
|
|
231 |
#start counting! |
|
|
232 |
for pmcid in sentenceFeatureUnigrams[word][benefitHarmfulOrEntity]["pmcid"]: |
|
|
233 |
sentenceFeatureUnigrams[word][benefitHarmfulOrEntity]["count"] += 1 |
|
|
234 |
|
|
|
235 |
if (sentenceFeatureUnigrams[word]["beneficial"]["count"] > 1) or (sentenceFeatureUnigrams[word]["harmful"]["count"] > 1): |
|
|
236 |
if sentenceFeatureUnigrams[word]["beneficial"]["count"] > (2*sentenceFeatureUnigrams[word]["harmful"]["count"]): |
|
|
237 |
beneficialUnigrams[word] = {} |
|
|
238 |
elif sentenceFeatureUnigrams[word]["harmful"]["count"] > (2*sentenceFeatureUnigrams[word]["beneficial"]["count"]): |
|
|
239 |
harmfulUnigrams[word] = {} |
|
|
240 |
else: pass #the words can't be categorized one way or the other |
|
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
|
244 |
return (entitiesTrainingDictionary, |
|
|
245 |
beneficialUnigrams, harmfulUnigrams, |
|
|
246 |
beneficialEntry, harmfulEntry, |
|
|
247 |
beneficialSplitSentences, harmfulSplitSentences, |
|
|
248 |
beneficialFullEntitiesList, harmfulFullEntitiesList) |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
def main(argv): |
|
|
252 |
#Python3 training.py beneficial.txt harmful.txt |
|
|
253 |
if len(argv) != 3: |
|
|
254 |
print("invalid number of arguments") |
|
|
255 |
sys.exit(2) |
|
|
256 |
|
|
|
257 |
#two separate lists because don't know how many entries in each, so dividing one list will be difficult |
|
|
258 |
(entitiesTrainingDictionary, beneficialUnigrams, harmfulUnigrams, |
|
|
259 |
beneficialCount, harmfulCount, pmcidBeneficialSentences, pmcidHarmfulSentences, |
|
|
260 |
beneficialFullEntitiesList, harmfulFullEntitiesList) = parseEntitiesIntoUnigrams(argv[1], argv[2], 10356, 9797) |
|
|
261 |
|
|
|
262 |
benprec = 10356/beneficialCount |
|
|
263 |
harmprec = 9797/harmfulCount |
|
|
264 |
|
|
|
265 |
|
|
|
266 |
numFeatures = len(entitiesTrainingDictionary) + len(beneficialUnigrams) + len(harmfulUnigrams) + 1 #plus 1 for harmful or beneficial |
|
|
267 |
uniqueFeaturesArray = numpy.empty(shape = (1, numFeatures), dtype="S128") |
|
|
268 |
|
|
|
269 |
#place the dictionary words into the array |
|
|
270 |
for index, feature in enumerate(entitiesTrainingDictionary): |
|
|
271 |
uniqueFeaturesArray[0, index] = feature |
|
|
272 |
|
|
|
273 |
finalColumn = len(entitiesTrainingDictionary) |
|
|
274 |
|
|
|
275 |
for index, feature in enumerate(beneficialUnigrams): |
|
|
276 |
currentColumn = index + finalColumn |
|
|
277 |
uniqueFeaturesArray[0, currentColumn] = feature |
|
|
278 |
finalColumn += len(beneficialUnigrams) |
|
|
279 |
|
|
|
280 |
for index, feature in enumerate(harmfulUnigrams): |
|
|
281 |
currentColumn = index + finalColumn |
|
|
282 |
uniqueFeaturesArray[0, currentColumn] = feature |
|
|
283 |
|
|
|
284 |
uniqueFeaturesArray[0][:-1].sort() |
|
|
285 |
|
|
|
286 |
beneficial80Percent = int(beneficialCount * benprec)-1 |
|
|
287 |
beneficial20Percent = int(beneficialCount - beneficial80Percent) |
|
|
288 |
harmful80Percent = int(harmfulCount * harmprec)-1 |
|
|
289 |
harmful20Percent = int(harmfulCount - harmful80Percent) |
|
|
290 |
|
|
|
291 |
trainArray = numpy.empty(shape=((beneficial80Percent + harmful80Percent), numFeatures), dtype=numpy.int8) #Default is numpy.float64 |
|
|
292 |
testArray = numpy.empty(shape=((beneficial20Percent + harmful20Percent), numFeatures), dtype=numpy.int8) |
|
|
293 |
|
|
|
294 |
#training data |
|
|
295 |
for entry in range(0, beneficial80Percent): |
|
|
296 |
#for each entry, find the index of the given feature |
|
|
297 |
for word in pmcidBeneficialSentences[entry]: |
|
|
298 |
#get the index of the given feature |
|
|
299 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], word.encode("utf-8")) |
|
|
300 |
if uniqueFeaturesArray[0][featureColumn] == word.encode("utf-8"): |
|
|
301 |
trainArray[entry, featureColumn] = 1 |
|
|
302 |
|
|
|
303 |
for entity in beneficialFullEntitiesList[entry]: |
|
|
304 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], entity) |
|
|
305 |
if uniqueFeaturesArray[0][featureColumn] == entity: |
|
|
306 |
trainArray[entry, featureColumn] = 1 |
|
|
307 |
trainArray[entry, -1] = 1 |
|
|
308 |
|
|
|
309 |
for entry in range(0, harmful80Percent): |
|
|
310 |
trainingEntry = entry + beneficial80Percent |
|
|
311 |
for word in pmcidHarmfulSentences[entry]: |
|
|
312 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], word.encode("utf-8")) |
|
|
313 |
if uniqueFeaturesArray[0][featureColumn] == word.encode("utf-8"): |
|
|
314 |
trainArray[trainingEntry, featureColumn] = 1 |
|
|
315 |
for entity in harmfulFullEntitiesList[entry]: |
|
|
316 |
#get the index of the given feature |
|
|
317 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], entity) |
|
|
318 |
if uniqueFeaturesArray[0][featureColumn] == entity: |
|
|
319 |
trainArray[trainingEntry, featureColumn] = 1 |
|
|
320 |
|
|
|
321 |
#test data |
|
|
322 |
for entry in range(0, beneficial20Percent): |
|
|
323 |
dataEntry = entry + beneficial80Percent #finding next beneficial entry, starting from 60% until 80% |
|
|
324 |
for word in pmcidBeneficialSentences[dataEntry]: |
|
|
325 |
#get the index of the given feature |
|
|
326 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], word.encode("utf-8")) |
|
|
327 |
if uniqueFeaturesArray[0][featureColumn] == word.encode("utf-8"): |
|
|
328 |
testArray[entry, featureColumn] = 1 |
|
|
329 |
|
|
|
330 |
for entity in beneficialFullEntitiesList[dataEntry]: |
|
|
331 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], entity) |
|
|
332 |
if uniqueFeaturesArray[0][featureColumn] == entity: |
|
|
333 |
testArray[entry, featureColumn] = 1 |
|
|
334 |
testArray[entry, -1] = 1 |
|
|
335 |
|
|
|
336 |
|
|
|
337 |
|
|
|
338 |
for entry in range(0, harmful20Percent): |
|
|
339 |
dataEntry = entry + harmful80Percent # finding the next harmful entry starting from 60% until 80% |
|
|
340 |
testEntry = entry + beneficial20Percent #because the prior data entered ended with beneficial20Percent |
|
|
341 |
|
|
|
342 |
for word in pmcidHarmfulSentences[dataEntry]: |
|
|
343 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], feature.encode("utf-8")) |
|
|
344 |
if uniqueFeaturesArray[0][featureColumn] == word.encode("utf-8"): |
|
|
345 |
testArray[testEntry, featureColumn] = 1 |
|
|
346 |
|
|
|
347 |
for entity in harmfulFullEntitiesList[dataEntry]: |
|
|
348 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0][:-1], entity) |
|
|
349 |
if uniqueFeaturesArray[0][featureColumn] == entity: |
|
|
350 |
testArray[testEntry, featureColumn] = 1 |
|
|
351 |
|
|
|
352 |
|
|
|
353 |
###################################################CLASSIFICATION SECTION################################################################ |
|
|
354 |
|
|
|
355 |
#Here we set up our list for support vectors and our list for classes. |
|
|
356 |
#We will setup lists to hold our support vectors our classes. |
|
|
357 |
supportVectorsL = [] |
|
|
358 |
classesListL = [] |
|
|
359 |
|
|
|
360 |
for row in trainArray: |
|
|
361 |
y1 = row[len(row)-1] |
|
|
362 |
supportVectorsL.append(row[:-1]) |
|
|
363 |
classesListL.append(y1) |
|
|
364 |
#Here we initialize our Linear classifier |
|
|
365 |
supportVectors = numpy.asarray(supportVectorsL) |
|
|
366 |
classesList = numpy.asarray(classesListL) |
|
|
367 |
#Here we try out the linear regresion stuff |
|
|
368 |
classifier = linear_model.LogisticRegression() |
|
|
369 |
classifier.fit(supportVectors,classesList) |
|
|
370 |
############Test our sets through our logisitc model################## |
|
|
371 |
print("--------------------LOGISTIC------------------------") |
|
|
372 |
logistic(classifier,testArray,"TEST") |
|
|
373 |
|
|
|
374 |
print("--------------------SVM------------------------") |
|
|
375 |
#Here we set up the svm |
|
|
376 |
classifier = svm.SVC() |
|
|
377 |
classifier.fit(supportVectors,classesList) |
|
|
378 |
classifier.kernel="linear" |
|
|
379 |
############Test our sets through our SVM model################## |
|
|
380 |
SVC(classifier,testArray,"TEST") |
|
|
381 |
|
|
|
382 |
sys.exit(0) |
|
|
383 |
|
|
|
384 |
def SVC(classifier, testArray,t): |
|
|
385 |
testpredictionarray = [] |
|
|
386 |
for row in testArray: |
|
|
387 |
predictionvector = row[:-1] |
|
|
388 |
if 1 in predictionvector: |
|
|
389 |
predictionvector = [predictionvector] |
|
|
390 |
prediction = classifier.predict(predictionvector) |
|
|
391 |
pre = int(prediction[0]) |
|
|
392 |
else: |
|
|
393 |
pre = -1 |
|
|
394 |
testpredictionarray.append(pre) |
|
|
395 |
totalAccuray(testArray,testpredictionarray,t) |
|
|
396 |
featAccuracy(testArray,testpredictionarray,t,1) |
|
|
397 |
featAccuracy(testArray,testpredictionarray,t,2) |
|
|
398 |
|
|
|
399 |
def logistic(classifier, testArray,t): |
|
|
400 |
testpredictionarray = [] |
|
|
401 |
for row in testArray: |
|
|
402 |
predictionvector = row[:-1] |
|
|
403 |
if 1 in predictionvector: |
|
|
404 |
predictionvector = [predictionvector] |
|
|
405 |
prediction = classifier.predict(predictionvector) |
|
|
406 |
pre = int(prediction[0]) |
|
|
407 |
else: |
|
|
408 |
pre = -1 |
|
|
409 |
testpredictionarray.append(pre) |
|
|
410 |
totalAccuray(testArray,testpredictionarray,t) |
|
|
411 |
featAccuracy(testArray,testpredictionarray,t,1) |
|
|
412 |
featAccuracy(testArray,testpredictionarray,t,2) |
|
|
413 |
|
|
|
414 |
|
|
|
415 |
def totalAccuray(testArray,testpredictionarray,t): |
|
|
416 |
testcounter = 0 |
|
|
417 |
#here we test for accuracy in the test set results. |
|
|
418 |
for x in range(0,len(testArray)): |
|
|
419 |
t1= testArray[x][len(testArray[x])-1] |
|
|
420 |
t1 = int(t1) |
|
|
421 |
if t1 == testpredictionarray[x]: |
|
|
422 |
testcounter = testcounter + 1 |
|
|
423 |
accuracy= testcounter/len(testArray) |
|
|
424 |
print(t+" set accuracy = " + str(accuracy)) |
|
|
425 |
|
|
|
426 |
def featAccuracy(testArray,testpredictionarray,t,y): |
|
|
427 |
actual = 0 |
|
|
428 |
testcounter = 0 |
|
|
429 |
for x in range(0,len(testArray)): |
|
|
430 |
l = list(testArray[x]) |
|
|
431 |
c = l.count(1) |
|
|
432 |
if c == y: |
|
|
433 |
actual+=1 |
|
|
434 |
t1= testArray[x][len(testArray[x])-1] |
|
|
435 |
t1 = int(t1) |
|
|
436 |
if t1 == testpredictionarray[x]: |
|
|
437 |
testcounter = testcounter + 1 |
|
|
438 |
try: |
|
|
439 |
accuracy= testcounter/actual |
|
|
440 |
except ZeroDivisionError: |
|
|
441 |
print(t+" set accuracy for only "+str(y)+" feature vectors = UNDEFINED") |
|
|
442 |
return |
|
|
443 |
|
|
|
444 |
print(t+" set accuracy for only "+str(y)+" feature vectors = " + str(accuracy)) |
|
|
445 |
|
|
|
446 |
|
|
|
447 |
|
|
|
448 |
main(sys.argv) |
|
|
449 |
|
|
|
450 |
# |