|
a |
|
b/MedicalRelationExtractor/entitiesmiddle.py |
|
|
1 |
#AUTHOR: RAHUL VERMA and SPIRO RAZIS |
|
|
2 |
import sys |
|
|
3 |
import pprint |
|
|
4 |
import numpy |
|
|
5 |
from sklearn import svm |
|
|
6 |
from sklearn import linear_model |
|
|
7 |
import time |
|
|
8 |
start_time = time.time() |
|
|
9 |
|
|
|
10 |
numpy.set_printoptions(threshold=numpy.nan) |
|
|
11 |
|
|
|
12 |
def parseTextViaPMCID(textFile, pmcidFeatureList, uniqueWordsDictionary,lim): |
|
|
13 |
|
|
|
14 |
if textFile.startswith("beneficial"): |
|
|
15 |
#print("beneficial") |
|
|
16 |
fileType = "beneficial".encode('utf-8') |
|
|
17 |
elif textFile.startswith("harmful"): |
|
|
18 |
#print("harmful") |
|
|
19 |
fileType = "harmful".encode('utf-8') |
|
|
20 |
else: |
|
|
21 |
fileType = "" |
|
|
22 |
#print("invalid file name") |
|
|
23 |
#sys.exit(2) |
|
|
24 |
|
|
|
25 |
entryCount = 0 |
|
|
26 |
disease = "" |
|
|
27 |
causeOrTreatment = "" |
|
|
28 |
relation = "" |
|
|
29 |
sentence = "" |
|
|
30 |
newEntry = False |
|
|
31 |
limit = 0 |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
with open(textFile, "r") as openedTextFile: |
|
|
35 |
for line in openedTextFile: |
|
|
36 |
if line.startswith("pmcid : "): #it's the idNumber |
|
|
37 |
entryCount += 1 |
|
|
38 |
newEntry = True |
|
|
39 |
elif line.startswith("sentence: "): #it's a sentence |
|
|
40 |
sentence = line[10:-1] |
|
|
41 |
pass |
|
|
42 |
|
|
|
43 |
elif line.startswith("entities: "): #it's the two in a relationship |
|
|
44 |
disease = line[11:line.index(",")].lower().encode('utf-8') |
|
|
45 |
causeOrTreatment = line[(line.index(",")+2):-2].lower().encode('utf-8') |
|
|
46 |
#print("fileType: %s" %fileType) |
|
|
47 |
#print("disease: %s" %disease) |
|
|
48 |
#print("causeOrTreatment: %s" %causeOrTreatment) |
|
|
49 |
|
|
|
50 |
#feature 1: 11 to comma |
|
|
51 |
#feature 2: comma+2 to -2, since -1 is "\n" |
|
|
52 |
#entities: {asthmatic, budesonide} |
|
|
53 |
#add disease and cause/treatment to dictionary of unique words/phrases |
|
|
54 |
if disease not in uniqueWordsDictionary: |
|
|
55 |
uniqueWordsDictionary[disease] = {} |
|
|
56 |
#uniqueWordsDictionary[disease] = disease |
|
|
57 |
if causeOrTreatment not in uniqueWordsDictionary: |
|
|
58 |
uniqueWordsDictionary[causeOrTreatment] = {} |
|
|
59 |
#uniqueWordsDictionary[causeOrTreatment] = causeOrTreatment |
|
|
60 |
|
|
|
61 |
elif line.startswith("offsets : "): #the position of the entities |
|
|
62 |
actualsentencefeaturelist = [] |
|
|
63 |
# In this part I will try to add all the words in between the disease and causeOrTreatment |
|
|
64 |
firstoffset = int(line[11:line.index(",")]) |
|
|
65 |
secondoffset = int(line[(line.index(",")+2):-2]) |
|
|
66 |
beginning = min(firstoffset,secondoffset) |
|
|
67 |
ending = max(firstoffset,secondoffset) |
|
|
68 |
#print(beginning,ending) |
|
|
69 |
sentencefeaturelist = sentence[beginning:ending].split(" ") |
|
|
70 |
#print(sentencefeaturelist) |
|
|
71 |
#sys.exit(0) |
|
|
72 |
sentencefeaturelist.pop() |
|
|
73 |
for word in sentencefeaturelist: |
|
|
74 |
if (len(word)>3): |
|
|
75 |
actualsentencefeaturelist.append(word.encode('utf-8')) |
|
|
76 |
if limit < lim: |
|
|
77 |
for word in actualsentencefeaturelist: |
|
|
78 |
if word not in uniqueWordsDictionary: |
|
|
79 |
uniqueWordsDictionary[word]={} |
|
|
80 |
#print(actualsentencefeaturelist) |
|
|
81 |
#sys.exit(0) |
|
|
82 |
pass |
|
|
83 |
#offset |
|
|
84 |
#pmcidData.append(line[10:-1]) |
|
|
85 |
#currentLine += 1 |
|
|
86 |
elif line.startswith("relation: "): #the actual relationship |
|
|
87 |
#feature3, but not processed for this assignment |
|
|
88 |
relation = line[10:-1].lower().encode('utf-8') |
|
|
89 |
#if relation not in uniqueWordsDictionary: |
|
|
90 |
# uniqueWordsDictionary[relation] = {} |
|
|
91 |
#pmcidData.append(line[10:-1]) |
|
|
92 |
else: |
|
|
93 |
if line.startswith("\n") and (newEntry == True): |
|
|
94 |
features = [] |
|
|
95 |
for word in actualsentencefeaturelist: |
|
|
96 |
features.append(word) |
|
|
97 |
features = features + [disease, causeOrTreatment, relation, fileType] |
|
|
98 |
|
|
|
99 |
pmcidFeatureList.append(features) |
|
|
100 |
#print(pmcidFeatureList) |
|
|
101 |
#sys.exit(0) |
|
|
102 |
disease = "" |
|
|
103 |
causeOrTreatment = "" |
|
|
104 |
relation = "" |
|
|
105 |
sentence = "" |
|
|
106 |
newEntry = False |
|
|
107 |
limit += 1 |
|
|
108 |
else: |
|
|
109 |
print("invalid line: %s" %(line)) |
|
|
110 |
sys.exit(2) |
|
|
111 |
|
|
|
112 |
return (pmcidFeatureList, entryCount, uniqueWordsDictionary) |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
def printFeatureWithCellValue(numpyRow, featureRow): |
|
|
116 |
for index, feature in enumerate(featureRow): |
|
|
117 |
print("%s: %d" %(feature, numpyRow[index])) |
|
|
118 |
print("harmfulOrBeneficial: %d" %(numpyRow[-1])) |
|
|
119 |
return |
|
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
|
123 |
def main(argv): |
|
|
124 |
#Python3 training.py beneficial.txt harmful.txt |
|
|
125 |
if len(argv) != 3: |
|
|
126 |
print("invalid number of arguments") |
|
|
127 |
sys.exit(2) |
|
|
128 |
|
|
|
129 |
#two separate lists because don't know how many entries in each, so dividing one list will be difficult |
|
|
130 |
pmcidBeneficialData = [] |
|
|
131 |
pmcidHarmfulData = [] |
|
|
132 |
uniqueWordsDictionary = {} |
|
|
133 |
|
|
|
134 |
(pmcidBeneficialData, beneficialCount, uniqueWordsDictionary) = parseTextViaPMCID(argv[1], pmcidBeneficialData, uniqueWordsDictionary,10356) |
|
|
135 |
(pmcidHarmfulData, harmfulCount, uniqueWordsDictionary) = parseTextViaPMCID(argv[2], pmcidHarmfulData, uniqueWordsDictionary,9797) |
|
|
136 |
benprec = 10356/beneficialCount |
|
|
137 |
harmprec = 9797/harmfulCount |
|
|
138 |
|
|
|
139 |
uniqueFeaturesArray = numpy.empty(shape = (1, len(uniqueWordsDictionary)), dtype="S128") |
|
|
140 |
#place the dictionary words into the array |
|
|
141 |
for index, feature in enumerate(uniqueWordsDictionary): |
|
|
142 |
uniqueFeaturesArray[0, index] = feature |
|
|
143 |
|
|
|
144 |
uniqueFeaturesArray.sort() |
|
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
|
148 |
#now to create the three individual arrays |
|
|
149 |
numFeatures = len(uniqueWordsDictionary) + 1 #plus 1 for harmful or beneficial |
|
|
150 |
|
|
|
151 |
#from 20 to 80%: |
|
|
152 |
#beneficial60Percent = int(beneficialCount * 0.6) |
|
|
153 |
beneficial80Percent = int(beneficialCount * benprec)-1 |
|
|
154 |
beneficial20Percent = int(beneficialCount - beneficial80Percent) |
|
|
155 |
|
|
|
156 |
#harmful60Percent = int(harmfulCount * 0.6) |
|
|
157 |
harmful80Percent = int(harmfulCount * harmprec)-1 |
|
|
158 |
harmful20Percent = int(harmfulCount - harmful80Percent) |
|
|
159 |
|
|
|
160 |
#shape = (rows, columns) |
|
|
161 |
trainArray = numpy.empty(shape=((beneficial80Percent + harmful80Percent), numFeatures), dtype=numpy.int8) #Default is numpy.float64 |
|
|
162 |
testArray = numpy.empty(shape=((beneficial20Percent + harmful20Percent), numFeatures), dtype=numpy.int8) |
|
|
163 |
# |
|
|
164 |
|
|
|
165 |
#training data |
|
|
166 |
for entry in range(0, beneficial80Percent): |
|
|
167 |
#for each entry, find the index of the given feature |
|
|
168 |
for index, feature in enumerate(pmcidBeneficialData[entry]): |
|
|
169 |
if index < 2: |
|
|
170 |
#get the index of the given feature |
|
|
171 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0], feature) |
|
|
172 |
if uniqueFeaturesArray[0][featureColumn] == feature: |
|
|
173 |
trainArray[entry, featureColumn] = 1 |
|
|
174 |
else: print("trainArray: incorrect beneficial feature match"); sys.exit(0) |
|
|
175 |
else: break |
|
|
176 |
trainArray[entry, -1] = 1 |
|
|
177 |
|
|
|
178 |
for entry in range(0, harmful80Percent): |
|
|
179 |
for index, feature in enumerate(pmcidHarmfulData[entry]): |
|
|
180 |
if index < 2: |
|
|
181 |
trainingEntry = entry + beneficial80Percent |
|
|
182 |
#get the index of the given feature |
|
|
183 |
featureColumn = numpy.searchsorted(uniqueFeaturesArray[0], feature) |
|
|
184 |
#set it to 1 |
|
|
185 |
if uniqueFeaturesArray[0][featureColumn] == feature: |
|
|
186 |
trainArray[trainingEntry, featureColumn] = 1 |
|
|
187 |
else: print("trainArray: incorrect harmful feature match"); sys.exit(0) |
|
|
188 |
else: break #beneficialOrHarmful column remains 0 |
|
|
189 |
|
|
|
190 |
|
|
|
191 |
#test data |
|
|
192 |
for entry in range(0, beneficial20Percent): |
|
|
193 |
dataEntry = entry + beneficial80Percent #finding next beneficial entry, starting from 60% until 80% |
|
|
194 |
for index, feature in enumerate(pmcidBeneficialData[dataEntry]): |
|
|
195 |
if index < 2: |
|
|
196 |
for featureColumn in range(0,len(uniqueFeaturesArray[0])): |
|
|
197 |
if uniqueFeaturesArray[0][featureColumn] == feature: |
|
|
198 |
testArray[entry, featureColumn] = 1 |
|
|
199 |
else: break #index == 3 and the column should remain 0 |
|
|
200 |
testArray[entry, -1] = 1 |
|
|
201 |
for entry in range(0, harmful20Percent): |
|
|
202 |
dataEntry = entry + harmful80Percent # finding the next harmful entry starting from 60% until 80% |
|
|
203 |
for index, feature in enumerate(pmcidHarmfulData[dataEntry]): |
|
|
204 |
if index < 2: |
|
|
205 |
devEntry = entry + beneficial20Percent #because the prior data entered ended with beneficial20Percent |
|
|
206 |
for featureColumn in range(0,len(uniqueFeaturesArray[0])): |
|
|
207 |
if uniqueFeaturesArray[0][featureColumn] == feature: |
|
|
208 |
testArray[devEntry, featureColumn] = 1 |
|
|
209 |
else: break #index == 3 and column should remain 0 |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
|
|
|
213 |
###########################################CLASSIFICATION SECTION############################################################# |
|
|
214 |
|
|
|
215 |
#Here we set up our list for support vectors and our list for classes. |
|
|
216 |
#We will setup lists to hold our support vectors our classes. |
|
|
217 |
supportVectorsL = [] |
|
|
218 |
classesListL = [] |
|
|
219 |
|
|
|
220 |
for row in trainArray: |
|
|
221 |
y1 = row[len(row)-1] |
|
|
222 |
supportVectorsL.append(row[:-1]) |
|
|
223 |
classesListL.append(y1) |
|
|
224 |
#Here we initialize our Linear classifier |
|
|
225 |
supportVectors = numpy.asarray(supportVectorsL) |
|
|
226 |
classesList = numpy.asarray(classesListL) |
|
|
227 |
#Here we try out the linear regresion stuff |
|
|
228 |
classifier = linear_model.LogisticRegression() |
|
|
229 |
classifier.fit(supportVectors,classesList) |
|
|
230 |
############Test our sets through our logisitc model################## |
|
|
231 |
print("--------------------LOGISTIC------------------------") |
|
|
232 |
logistic(classifier,testArray,"TEST") |
|
|
233 |
|
|
|
234 |
print("--------------------SVM------------------------") |
|
|
235 |
#Here we set up the svm |
|
|
236 |
classifier = svm.SVC() |
|
|
237 |
classifier.fit(supportVectors,classesList) |
|
|
238 |
classifier.kernel="linear" |
|
|
239 |
############Test our sets through our SVM model################## |
|
|
240 |
SVC(classifier,testArray,"TEST") |
|
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
|
245 |
sys.exit(0) |
|
|
246 |
|
|
|
247 |
def SVC(classifier, testArray,t): |
|
|
248 |
testpredictionarray = [] |
|
|
249 |
for row in testArray: |
|
|
250 |
predictionvector = row[:-1] |
|
|
251 |
if 1 in predictionvector: |
|
|
252 |
predictionvector = [predictionvector] |
|
|
253 |
prediction = classifier.predict(predictionvector) |
|
|
254 |
pre = int(prediction[0]) |
|
|
255 |
else: |
|
|
256 |
pre = -1 |
|
|
257 |
testpredictionarray.append(pre) |
|
|
258 |
totalAccuray(testArray,testpredictionarray,t) |
|
|
259 |
featAccuracy(testArray,testpredictionarray,t,1) |
|
|
260 |
featAccuracy(testArray,testpredictionarray,t,2) |
|
|
261 |
|
|
|
262 |
def logistic(classifier, testArray,t): |
|
|
263 |
testpredictionarray = [] |
|
|
264 |
for row in testArray: |
|
|
265 |
predictionvector = row[:-1] |
|
|
266 |
if 1 in predictionvector: |
|
|
267 |
predictionvector = [predictionvector] |
|
|
268 |
prediction = classifier.predict(predictionvector) |
|
|
269 |
pre = int(prediction[0]) |
|
|
270 |
else: |
|
|
271 |
pre = -1 |
|
|
272 |
testpredictionarray.append(pre) |
|
|
273 |
totalAccuray(testArray,testpredictionarray,t) |
|
|
274 |
featAccuracy(testArray,testpredictionarray,t,1) |
|
|
275 |
featAccuracy(testArray,testpredictionarray,t,2) |
|
|
276 |
|
|
|
277 |
|
|
|
278 |
def totalAccuray(testArray,testpredictionarray,t): |
|
|
279 |
testcounter = 0 |
|
|
280 |
#here we test for accuracy in the test set results. |
|
|
281 |
for x in range(0,len(testArray)): |
|
|
282 |
t1= testArray[x][len(testArray[x])-1] |
|
|
283 |
t1 = int(t1) |
|
|
284 |
if t1 == testpredictionarray[x]: |
|
|
285 |
testcounter = testcounter + 1 |
|
|
286 |
accuracy= testcounter/len(testArray) |
|
|
287 |
print(t+" set accuracy = " + str(accuracy)) |
|
|
288 |
|
|
|
289 |
def featAccuracy(testArray,testpredictionarray,t,y): |
|
|
290 |
actual = 0 |
|
|
291 |
testcounter = 0 |
|
|
292 |
for x in range(0,len(testArray)): |
|
|
293 |
l = list(testArray[x]) |
|
|
294 |
c = l.count(1) |
|
|
295 |
if c == y: |
|
|
296 |
actual+=1 |
|
|
297 |
t1= testArray[x][len(testArray[x])-1] |
|
|
298 |
t1 = int(t1) |
|
|
299 |
if t1 == testpredictionarray[x]: |
|
|
300 |
testcounter = testcounter + 1 |
|
|
301 |
try: |
|
|
302 |
accuracy= testcounter/actual |
|
|
303 |
except ZeroDivisionError: |
|
|
304 |
print(t+" set accuracy for only "+str(y)+" feature vectors = UNDEFINED") |
|
|
305 |
return |
|
|
306 |
|
|
|
307 |
print(t+" set accuracy for only "+str(y)+" feature vectors = " + str(accuracy)) |
|
|
308 |
|
|
|
309 |
|
|
|
310 |
|
|
|
311 |
main(sys.argv) |
|
|
312 |
|
|
|
313 |
# |