[0218cb]: / stay_admission / train.py

Download this file

265 lines (209 with data), 10.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import pickle
import pandas as pd
import numpy as np
import sparse
import torch
import model
from tqdm import tqdm
from torch import nn, optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
import sklearn
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, cohen_kappa_score,precision_recall_curve, auc
import matplotlib.pyplot as plt
from baseline import *
from operations import *
from focal_loss.focal_loss import FocalLoss
import os
def eval_metric_stay(eval_set, model, device, encoder = 'normal'):
model.eval()
criterion = torch.nn.BCELoss()
with torch.no_grad():
y_true = np.array([])
y_pred = np.array([])
y_score = np.array([])
for i, batch_data in enumerate(eval_set):
X = batch_data[0]
if encoder == 'HMP':
S = batch_data[1]
elif encoder == 'BERT':
S = batch_data[1]
input_ids = batch_data[2]
attention_mask = batch_data[3]
token_type_ids = batch_data[4]
labels = batch_data[-1]
if encoder == 'normal':
X2 = batch_data[1]
S = batch_data[2]
# print(X.shape)
outputs = model(X, X2, S).squeeze().to(device)
elif encoder == 'HMP':
outputs = model(X,S).squeeze().to(device)
elif encoder == 'BERT':
outputs = model(X,S,input_ids, token_type_ids, attention_mask).squeeze().to(device)
score = outputs
score = score.data.cpu().numpy()
labels = labels.data.cpu().numpy()
pred = np.where(score >= 0.5, 1.0, 0.0)
if labels.shape[0] != 1:
y_true = np.concatenate((y_true, labels))
y_pred = np.concatenate((y_pred, pred))
y_score = np.concatenate((y_score, score))
else:
y_true = np.array(list(y_true) + list(labels))
y_pred = np.array(list(y_pred) + list([pred]))
y_score = np.array(list(y_score) + list([score]))
accuary = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
roc_auc = roc_auc_score(y_true, y_score)
lr_precision, lr_recall, _ = precision_recall_curve(y_true, y_score)
pr_auc = auc(lr_recall, lr_precision)
kappa = cohen_kappa_score(y_true, y_pred)
loss = criterion(torch.from_numpy(y_true), torch.from_numpy(y_score))
return f1, roc_auc, pr_auc, kappa, loss
def eval_metric_admission(eval_set, model, device, encoder = 'normal'):
model.eval()
criterion = torch.nn.BCELoss()
with torch.no_grad():
y_true = np.array([])
y_pred = np.array([])
y_score = np.array([])
for i, batch_data in enumerate(eval_set):
icd = batch_data[0]
drug = batch_data[1]
X = batch_data[2]
S = batch_data[3]
input_ids = batch_data[4]
attention_mask = batch_data[5]
token_type_ids = batch_data[6]
labels = batch_data[-1]
outputs = model(icd, drug,X,S,input_ids, attention_mask, token_type_ids).squeeze().to(device)
score = outputs
score = score.data.cpu().numpy()
labels = labels.data.cpu().numpy()
# pred = torch.tensor([1 if x > 0.5 else 0 for x in score])
pred = np.where(score >= 0.5, 1.0, 0.0)
y_true = np.concatenate((y_true, labels))
y_pred = np.concatenate((y_pred, pred))
y_score = np.concatenate((y_score, score))
accuary = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
roc_auc = roc_auc_score(y_true, y_score)
lr_precision, lr_recall, _ = precision_recall_curve(y_true, y_score)
pr_auc = auc(lr_recall, lr_precision)
kappa = cohen_kappa_score(y_true, y_pred)
loss = criterion(torch.from_numpy(y_true), torch.from_numpy(y_score))
return f1, roc_auc, pr_auc, kappa, loss
def icu_trainer(model, train, valid, test, epoch, learn_rate, batch_size, seed, device, encoder = 'normal', patience = 3):
torch.manual_seed(seed)
model.train()
aupr_list = []
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(),
momentum=0.9,
lr = learn_rate,
weight_decay = 1e-2)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_stay(valid, model, device, encoder)
best_dev = valid_loss
best_epoc = 0
model.train()
from datetime import datetime
dt = datetime.now()
torch.save(model, "saved_model/hmp_model" + str(dt) +".p")
best_name = "saved_model/hmp_model" + str(dt) +".p"
for epoch in tqdm(range(epoch)):
loss = 0
model.train()
for batch_idx, batch_data in enumerate(train):
X = batch_data[0]
if encoder == 'HMP':
S = batch_data[1]
elif encoder == 'BERT':
S = batch_data[1]
input_ids = batch_data[2]
attention_mask = batch_data[3]
token_type_ids = batch_data[4]
label = batch_data[-1]
optimizer.zero_grad()
if encoder == 'normal':
outputs = model(X).squeeze().to(device)
elif encoder == 'HMP':
outputs = model(X,S).squeeze().to(device)
elif encoder == 'BERT':
outputs = model(X,S,input_ids, attention_mask, token_type_ids).squeeze().to(device)
train_loss = criterion(outputs, label)
train_loss.backward()
optimizer.step()
loss += train_loss.item()
scheduler.step()
print("Training Loss = ", loss)
model.eval()
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_stay(valid, model, device, encoder)
print("Dev = ", valid_loss)
dt = datetime.now()
if best_dev > valid_loss:
best_dev = valid_loss
best_epoc = epoch
torch.save(model, "saved_model/icu_model" + str(dt) +".p")
os.remove(best_name)
best_name = "saved_model/icu_model" + str(dt) +".p"
if epoch - best_epoc == patience:
break
model.train()
model = torch.load(best_name)
os.remove(best_name)
return model, aupr_list
def adm_trainer(model, train, valid, test, epoch, learn_rate, batch_size, seed, device, encoder = 'normal', patience = 3):
torch.manual_seed(seed)
model.train()
aupr_list = []
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(),
momentum=0.9,
lr = learn_rate,
weight_decay = 1e-2)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_admission(valid, model, device, encoder)
best_dev = valid_loss
best_epoc = 0
model.train()
for epoch in tqdm(range(epoch)):
loss = 0
for batch_idx, batch_data in enumerate(train):
icd = batch_data[0]
drug = batch_data[1]
X = batch_data[2]
S = batch_data[3]
input_ids = batch_data[4]
attention_mask = batch_data[5]
token_type_ids = batch_data[6]
label = batch_data[-1]
optimizer.zero_grad()
outputs = model(icd, drug,X,S,input_ids, attention_mask, token_type_ids).squeeze().to(device)
train_loss = criterion(outputs, label)
train_loss.backward()
optimizer.step()
loss += train_loss.item()
scheduler.step()
print("Training Loss = ", loss)
model.eval()
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_admission(valid, model, device, encoder)
print("Dev = ", valid_loss)
if best_dev > valid_loss:
best_dev = valid_loss
best_epoc = epoch
torch.save(model, "saved_model/adm_model.p")
if epoch - best_epoc == patience:
model = torch.load("saved_model/adm_model.p")
break
model.train()
model = torch.load("saved_model/adm_model.p")
return model, aupr_list