[0218cb]: / stay_admission / operations.py

Download this file

309 lines (258 with data), 11.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import sklearn
OPS1 = {
'identity': lambda d_model: Identity(d_model),
'ffn': lambda d_model: FFN(d_model),
'interaction_1': lambda d_model: Attention_s1(d_model),
'interaction_2': lambda d_model: Attention_s2(d_model),
}
OPS2 = {
'identity': lambda d_model: Identity(d_model),
'conv': lambda d_model: Conv(d_model),
'attention': lambda d_model: SelfAttention(d_model),
'rnn': lambda d_model: RNN(d_model),
'ffn': lambda d_model: FFN(d_model),
'interaction_1': lambda d_model: CatFC(d_model),
'interaction_2': lambda d_model: Attention_x(d_model)
}
OPS3 = {
'identity': lambda d_model: Identity(d_model),
'zero': lambda d_model: Zero(d_model),
}
OPS4 = {
'sum': lambda d_model: Sum(d_model),
'mul': lambda d_model: Mul(d_model),
}
class Zero(nn.Module):
def __init__(self, d_model):
super(Zero, self).__init__()
def forward(self, x, masks, lengths):
return torch.mul(x, 0)
class Sum(nn.Module):
def __init__(self, d_model):
super(Sum, self).__init__()
def forward(self, all_x):
out = all_x[0]
for x in all_x[1:]:
out += x
return out
class Mul(nn.Module):
def __init__(self, d_model):
super(Mul, self).__init__()
def forward(self, all_x):
out = all_x[0]
for x in all_x[1:]:
out = out * x
return out
class CatFC(nn.Module):
def __init__(self, d_model):
super(CatFC, self).__init__()
self.ffn = nn.Sequential(nn.Linear(2*d_model, 4 * d_model), nn.ReLU(),
nn.Linear(4 * d_model, d_model))
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, current_x, s, other_x):
s_ = s.unsqueeze(1).expand_as(current_x)
x = torch.cat((current_x, s_), dim=-1)
return self.layer_norm(self.ffn(x))
class Conv(nn.Module):
def __init__(self, d_model):
super(Conv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(),
nn.Conv1d(d_model, d_model, 3, padding=1),
nn.BatchNorm1d(d_model, affine=True)
)
# self.batchnm = nn.BatchNorm1d(d_model, affine=True)
# self.conv = nn.Conv1d(d_model, d_model, 3, padding=1)
def forward(self, x, masks, lengths):
x = self.op(x.permute(0, 2, 1))
return x.permute(0, 2, 1)
class FFN(nn.Module):
def __init__(self, d_model):
super(FFN, self).__init__()
self.ffn = nn.Sequential(nn.Linear(d_model, 4 * d_model), nn.ReLU(),
nn.Linear(4 * d_model, d_model))
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, x, masks, lengths):
x = self.layer_norm(x + self.ffn(x))
return x
class Identity(nn.Module):
def __init__(self, d_model):
super(Identity, self).__init__()
def forward(self, x, masks, lengths):
return x
class SelfAttention(nn.Module):
def __init__(self, in_feature, num_head=4, dropout=0.1):
super(SelfAttention, self).__init__()
self.in_feature = in_feature
self.num_head = num_head
self.size_per_head = in_feature // num_head
self.out_dim = num_head * self.size_per_head
assert self.size_per_head * num_head == in_feature
self.q_linear = nn.Linear(in_feature, in_feature, bias=False)
self.k_linear = nn.Linear(in_feature, in_feature, bias=False)
self.v_linear = nn.Linear(in_feature, in_feature, bias=False)
self.fc = nn.Linear(in_feature, in_feature, bias=False)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(in_feature)
def forward(self, x, attn_mask, lengths):
batch_size = x.size(0)
res = x
query = self.q_linear(x)
key = self.k_linear(x)
value = self.v_linear(x)
query = query.view(batch_size, self.num_head, -1, self.size_per_head)
key = key.view(batch_size, self.num_head, -1, self.size_per_head)
value = value.view(batch_size, self.num_head, -1, self.size_per_head)
scale = np.sqrt(self.size_per_head)
energy = torch.matmul(query, key.permute(0, 1, 3, 2)) / scale
attention = torch.softmax(energy, dim=-1)
x = torch.matmul(attention, value)
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(batch_size, -1, self.in_feature)
x = self.fc(x)
x = self.dropout(x)
x += res
x = self.layer_norm(x)
return x
class Attention_s1(nn.Module):
def __init__(self, in_feature, num_head=4, dropout=0.1):
super(Attention_s1, self).__init__()
self.in_feature = in_feature
self.num_head = num_head
self.size_per_head = in_feature // num_head
self.out_dim = num_head * self.size_per_head
assert self.size_per_head * num_head == in_feature
self.q_linear = nn.Linear(in_feature, in_feature, bias=False)
self.k_linear = nn.Linear(in_feature, in_feature, bias=False)
self.v_linear = nn.Linear(in_feature, in_feature, bias=False)
self.fc = nn.Linear(in_feature, in_feature, bias=False)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(in_feature)
def forward(self, s, x1, x2):
batch_size = x1.size(0)
s = s.unsqueeze(1)
res = s
query = self.q_linear(s)
key = self.k_linear(x1)
value = self.v_linear(x1)
query = query.view(batch_size, self.num_head, -1, self.size_per_head)
key = key.view(batch_size, self.num_head, -1, self.size_per_head)
value = value.view(batch_size, self.num_head, -1, self.size_per_head)
scale = np.sqrt(self.size_per_head)
energy = torch.matmul(query, key.permute(0, 1, 3, 2)) / scale
attention = torch.softmax(energy, dim=-1)
x = torch.matmul(attention, value)
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(batch_size, -1, self.in_feature)
x = self.fc(x)
x = self.dropout(x)
x += res
x = self.layer_norm(x)
return x.squeeze()
class Attention_s2(nn.Module):
def __init__(self, in_feature, num_head=4, dropout=0.1):
super(Attention_s2, self).__init__()
self.in_feature = in_feature
self.num_head = num_head
self.size_per_head = in_feature // num_head
self.out_dim = num_head * self.size_per_head
assert self.size_per_head * num_head == in_feature
self.q_linear = nn.Linear(in_feature, in_feature, bias=False)
self.k_linear = nn.Linear(in_feature, in_feature, bias=False)
self.v_linear = nn.Linear(in_feature, in_feature, bias=False)
self.fc = nn.Linear(in_feature, in_feature, bias=False)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(in_feature)
def forward(self, s, x1, x2):
batch_size = x2.size(0)
s = s.unsqueeze(1)
res = s
query = self.q_linear(s)
key = self.k_linear(x2)
value = self.v_linear(x2)
query = query.view(batch_size, self.num_head, -1, self.size_per_head)
key = key.view(batch_size, self.num_head, -1, self.size_per_head)
value = value.view(batch_size, self.num_head, -1, self.size_per_head)
scale = np.sqrt(self.size_per_head)
energy = torch.matmul(query, key.permute(0, 1, 3, 2)) / scale
attention = torch.softmax(energy, dim=-1)
x = torch.matmul(attention, value)
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(batch_size, -1, self.in_feature)
x = self.fc(x)
x = self.dropout(x)
x += res
x = self.layer_norm(x)
return x.squeeze()
class Attention_x(nn.Module):
def __init__(self, in_feature, num_head=4, dropout=0.1):
super(Attention_x, self).__init__()
self.in_feature = in_feature
self.num_head = num_head
self.size_per_head = in_feature // num_head
self.out_dim = num_head * self.size_per_head
assert self.size_per_head * num_head == in_feature
self.q_linear = nn.Linear(in_feature, in_feature, bias=False)
self.k_linear = nn.Linear(in_feature, in_feature, bias=False)
self.v_linear = nn.Linear(in_feature, in_feature, bias=False)
self.fc = nn.Linear(in_feature, in_feature, bias=False)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(in_feature)
def forward(self, current_x, s, other_x):
batch_size = current_x.size(0)
res = current_x
query = self.q_linear(current_x)
key = self.k_linear(other_x)
value = self.v_linear(other_x)
query = query.view(batch_size, self.num_head, -1, self.size_per_head)
key = key.view(batch_size, self.num_head, -1, self.size_per_head)
value = value.view(batch_size, self.num_head, -1, self.size_per_head)
scale = np.sqrt(self.size_per_head)
energy = torch.matmul(query, key.permute(0, 1, 3, 2)) / scale
attention = torch.softmax(energy, dim=-1)
x = torch.matmul(attention, value)
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(batch_size, -1, self.in_feature)
x = self.fc(x)
x = self.dropout(x)
x += res
x = self.layer_norm(x)
return x
class RNN(nn.Module):
def __init__(self, d_model):
super(RNN, self).__init__()
self.rnn = nn.GRU(d_model, d_model, num_layers=1, batch_first=True)
def forward(self, x, masks, lengths):
rnn_input = x
rnn_output, _ = self.rnn(rnn_input)
return rnn_output
class MaxPoolLayer(nn.Module):
"""
A layer that performs max pooling along the sequence dimension
"""
def __init__(self):
super().__init__()
def forward(self, inputs, mask_or_lengths=None):
"""
inputs: tensor of shape (batch_size, seq_len, hidden_size)
mask_or_lengths: tensor of shape (batch_size) or (batch_size, seq_len)
returns: tensor of shape (batch_size, hidden_size)
"""
bs, sl, _ = inputs.size()
if mask_or_lengths is not None:
if len(mask_or_lengths.size()) == 1:
mask = (torch.arange(sl, device=inputs.device).unsqueeze(0).expand(bs, sl) >= mask_or_lengths.unsqueeze(
1))
else:
mask = mask_or_lengths
inputs = inputs.masked_fill(mask.unsqueeze(-1).expand_as(inputs), float('-inf'))
max_pooled = inputs.max(1)[0]
return max_pooled
def prroc(testy, probs):
precision, recall, thresholds = sklearn.metrics.precision_recall_curve(testy, probs)
auc = auc(recall, precision)
return auc