|
a |
|
b/stay_admission/train.py |
|
|
1 |
#!/usr/bin/env python3 |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
|
|
|
4 |
import json |
|
|
5 |
import pickle |
|
|
6 |
import pandas as pd |
|
|
7 |
import numpy as np |
|
|
8 |
import sparse |
|
|
9 |
import torch |
|
|
10 |
import model |
|
|
11 |
from tqdm import tqdm |
|
|
12 |
from torch import nn, optim |
|
|
13 |
from torch.utils.data import DataLoader |
|
|
14 |
import torch.nn.functional as F |
|
|
15 |
import sklearn |
|
|
16 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, cohen_kappa_score,precision_recall_curve, auc |
|
|
17 |
import matplotlib.pyplot as plt |
|
|
18 |
from baseline import * |
|
|
19 |
from operations import * |
|
|
20 |
from focal_loss.focal_loss import FocalLoss |
|
|
21 |
import os |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def eval_metric_stay(eval_set, model, device, encoder = 'normal'): |
|
|
27 |
|
|
|
28 |
model.eval() |
|
|
29 |
criterion = torch.nn.BCELoss() |
|
|
30 |
with torch.no_grad(): |
|
|
31 |
y_true = np.array([]) |
|
|
32 |
y_pred = np.array([]) |
|
|
33 |
y_score = np.array([]) |
|
|
34 |
for i, batch_data in enumerate(eval_set): |
|
|
35 |
X = batch_data[0] |
|
|
36 |
if encoder == 'HMP': |
|
|
37 |
S = batch_data[1] |
|
|
38 |
elif encoder == 'BERT': |
|
|
39 |
S = batch_data[1] |
|
|
40 |
input_ids = batch_data[2] |
|
|
41 |
attention_mask = batch_data[3] |
|
|
42 |
token_type_ids = batch_data[4] |
|
|
43 |
labels = batch_data[-1] |
|
|
44 |
if encoder == 'normal': |
|
|
45 |
X2 = batch_data[1] |
|
|
46 |
S = batch_data[2] |
|
|
47 |
# print(X.shape) |
|
|
48 |
outputs = model(X, X2, S).squeeze().to(device) |
|
|
49 |
elif encoder == 'HMP': |
|
|
50 |
outputs = model(X,S).squeeze().to(device) |
|
|
51 |
elif encoder == 'BERT': |
|
|
52 |
outputs = model(X,S,input_ids, token_type_ids, attention_mask).squeeze().to(device) |
|
|
53 |
score = outputs |
|
|
54 |
score = score.data.cpu().numpy() |
|
|
55 |
labels = labels.data.cpu().numpy() |
|
|
56 |
|
|
|
57 |
pred = np.where(score >= 0.5, 1.0, 0.0) |
|
|
58 |
|
|
|
59 |
if labels.shape[0] != 1: |
|
|
60 |
|
|
|
61 |
y_true = np.concatenate((y_true, labels)) |
|
|
62 |
y_pred = np.concatenate((y_pred, pred)) |
|
|
63 |
y_score = np.concatenate((y_score, score)) |
|
|
64 |
else: |
|
|
65 |
y_true = np.array(list(y_true) + list(labels)) |
|
|
66 |
y_pred = np.array(list(y_pred) + list([pred])) |
|
|
67 |
y_score = np.array(list(y_score) + list([score])) |
|
|
68 |
accuary = accuracy_score(y_true, y_pred) |
|
|
69 |
precision = precision_score(y_true, y_pred) |
|
|
70 |
recall = recall_score(y_true, y_pred) |
|
|
71 |
f1 = f1_score(y_true, y_pred) |
|
|
72 |
roc_auc = roc_auc_score(y_true, y_score) |
|
|
73 |
lr_precision, lr_recall, _ = precision_recall_curve(y_true, y_score) |
|
|
74 |
pr_auc = auc(lr_recall, lr_precision) |
|
|
75 |
kappa = cohen_kappa_score(y_true, y_pred) |
|
|
76 |
loss = criterion(torch.from_numpy(y_true), torch.from_numpy(y_score)) |
|
|
77 |
|
|
|
78 |
return f1, roc_auc, pr_auc, kappa, loss |
|
|
79 |
|
|
|
80 |
def eval_metric_admission(eval_set, model, device, encoder = 'normal'): |
|
|
81 |
|
|
|
82 |
model.eval() |
|
|
83 |
criterion = torch.nn.BCELoss() |
|
|
84 |
with torch.no_grad(): |
|
|
85 |
y_true = np.array([]) |
|
|
86 |
y_pred = np.array([]) |
|
|
87 |
y_score = np.array([]) |
|
|
88 |
for i, batch_data in enumerate(eval_set): |
|
|
89 |
icd = batch_data[0] |
|
|
90 |
drug = batch_data[1] |
|
|
91 |
X = batch_data[2] |
|
|
92 |
S = batch_data[3] |
|
|
93 |
input_ids = batch_data[4] |
|
|
94 |
attention_mask = batch_data[5] |
|
|
95 |
token_type_ids = batch_data[6] |
|
|
96 |
labels = batch_data[-1] |
|
|
97 |
outputs = model(icd, drug,X,S,input_ids, attention_mask, token_type_ids).squeeze().to(device) |
|
|
98 |
score = outputs |
|
|
99 |
score = score.data.cpu().numpy() |
|
|
100 |
labels = labels.data.cpu().numpy() |
|
|
101 |
# pred = torch.tensor([1 if x > 0.5 else 0 for x in score]) |
|
|
102 |
|
|
|
103 |
pred = np.where(score >= 0.5, 1.0, 0.0) |
|
|
104 |
y_true = np.concatenate((y_true, labels)) |
|
|
105 |
y_pred = np.concatenate((y_pred, pred)) |
|
|
106 |
y_score = np.concatenate((y_score, score)) |
|
|
107 |
accuary = accuracy_score(y_true, y_pred) |
|
|
108 |
precision = precision_score(y_true, y_pred) |
|
|
109 |
recall = recall_score(y_true, y_pred) |
|
|
110 |
f1 = f1_score(y_true, y_pred) |
|
|
111 |
roc_auc = roc_auc_score(y_true, y_score) |
|
|
112 |
lr_precision, lr_recall, _ = precision_recall_curve(y_true, y_score) |
|
|
113 |
pr_auc = auc(lr_recall, lr_precision) |
|
|
114 |
kappa = cohen_kappa_score(y_true, y_pred) |
|
|
115 |
loss = criterion(torch.from_numpy(y_true), torch.from_numpy(y_score)) |
|
|
116 |
|
|
|
117 |
return f1, roc_auc, pr_auc, kappa, loss |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
def icu_trainer(model, train, valid, test, epoch, learn_rate, batch_size, seed, device, encoder = 'normal', patience = 3): |
|
|
121 |
|
|
|
122 |
torch.manual_seed(seed) |
|
|
123 |
|
|
|
124 |
model.train() |
|
|
125 |
aupr_list = [] |
|
|
126 |
|
|
|
127 |
criterion = torch.nn.BCELoss() |
|
|
128 |
optimizer = torch.optim.SGD(model.parameters(), |
|
|
129 |
momentum=0.9, |
|
|
130 |
lr = learn_rate, |
|
|
131 |
weight_decay = 1e-2) |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
|
135 |
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) |
|
|
136 |
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_stay(valid, model, device, encoder) |
|
|
137 |
best_dev = valid_loss |
|
|
138 |
best_epoc = 0 |
|
|
139 |
model.train() |
|
|
140 |
from datetime import datetime |
|
|
141 |
dt = datetime.now() |
|
|
142 |
torch.save(model, "saved_model/hmp_model" + str(dt) +".p") |
|
|
143 |
best_name = "saved_model/hmp_model" + str(dt) +".p" |
|
|
144 |
|
|
|
145 |
for epoch in tqdm(range(epoch)): |
|
|
146 |
|
|
|
147 |
loss = 0 |
|
|
148 |
model.train() |
|
|
149 |
for batch_idx, batch_data in enumerate(train): |
|
|
150 |
|
|
|
151 |
X = batch_data[0] |
|
|
152 |
if encoder == 'HMP': |
|
|
153 |
S = batch_data[1] |
|
|
154 |
elif encoder == 'BERT': |
|
|
155 |
S = batch_data[1] |
|
|
156 |
input_ids = batch_data[2] |
|
|
157 |
attention_mask = batch_data[3] |
|
|
158 |
token_type_ids = batch_data[4] |
|
|
159 |
label = batch_data[-1] |
|
|
160 |
optimizer.zero_grad() |
|
|
161 |
if encoder == 'normal': |
|
|
162 |
outputs = model(X).squeeze().to(device) |
|
|
163 |
elif encoder == 'HMP': |
|
|
164 |
outputs = model(X,S).squeeze().to(device) |
|
|
165 |
elif encoder == 'BERT': |
|
|
166 |
outputs = model(X,S,input_ids, attention_mask, token_type_ids).squeeze().to(device) |
|
|
167 |
train_loss = criterion(outputs, label) |
|
|
168 |
train_loss.backward() |
|
|
169 |
optimizer.step() |
|
|
170 |
loss += train_loss.item() |
|
|
171 |
scheduler.step() |
|
|
172 |
print("Training Loss = ", loss) |
|
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
|
176 |
model.eval() |
|
|
177 |
|
|
|
178 |
|
|
|
179 |
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_stay(valid, model, device, encoder) |
|
|
180 |
print("Dev = ", valid_loss) |
|
|
181 |
|
|
|
182 |
dt = datetime.now() |
|
|
183 |
if best_dev > valid_loss: |
|
|
184 |
best_dev = valid_loss |
|
|
185 |
best_epoc = epoch |
|
|
186 |
torch.save(model, "saved_model/icu_model" + str(dt) +".p") |
|
|
187 |
os.remove(best_name) |
|
|
188 |
best_name = "saved_model/icu_model" + str(dt) +".p" |
|
|
189 |
if epoch - best_epoc == patience: |
|
|
190 |
break |
|
|
191 |
model.train() |
|
|
192 |
model = torch.load(best_name) |
|
|
193 |
os.remove(best_name) |
|
|
194 |
return model, aupr_list |
|
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
|
198 |
def adm_trainer(model, train, valid, test, epoch, learn_rate, batch_size, seed, device, encoder = 'normal', patience = 3): |
|
|
199 |
|
|
|
200 |
torch.manual_seed(seed) |
|
|
201 |
|
|
|
202 |
model.train() |
|
|
203 |
aupr_list = [] |
|
|
204 |
|
|
|
205 |
criterion = torch.nn.BCELoss() |
|
|
206 |
optimizer = torch.optim.SGD(model.parameters(), |
|
|
207 |
momentum=0.9, |
|
|
208 |
lr = learn_rate, |
|
|
209 |
weight_decay = 1e-2) |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
|
|
|
213 |
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) |
|
|
214 |
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_admission(valid, model, device, encoder) |
|
|
215 |
best_dev = valid_loss |
|
|
216 |
best_epoc = 0 |
|
|
217 |
model.train() |
|
|
218 |
|
|
|
219 |
for epoch in tqdm(range(epoch)): |
|
|
220 |
|
|
|
221 |
loss = 0 |
|
|
222 |
|
|
|
223 |
for batch_idx, batch_data in enumerate(train): |
|
|
224 |
icd = batch_data[0] |
|
|
225 |
drug = batch_data[1] |
|
|
226 |
X = batch_data[2] |
|
|
227 |
S = batch_data[3] |
|
|
228 |
input_ids = batch_data[4] |
|
|
229 |
attention_mask = batch_data[5] |
|
|
230 |
token_type_ids = batch_data[6] |
|
|
231 |
label = batch_data[-1] |
|
|
232 |
optimizer.zero_grad() |
|
|
233 |
outputs = model(icd, drug,X,S,input_ids, attention_mask, token_type_ids).squeeze().to(device) |
|
|
234 |
train_loss = criterion(outputs, label) |
|
|
235 |
train_loss.backward() |
|
|
236 |
optimizer.step() |
|
|
237 |
loss += train_loss.item() |
|
|
238 |
scheduler.step() |
|
|
239 |
print("Training Loss = ", loss) |
|
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
model.eval() |
|
|
244 |
|
|
|
245 |
|
|
|
246 |
f1, roc_auc, pr_auc, kappa, valid_loss = eval_metric_admission(valid, model, device, encoder) |
|
|
247 |
print("Dev = ", valid_loss) |
|
|
248 |
if best_dev > valid_loss: |
|
|
249 |
best_dev = valid_loss |
|
|
250 |
best_epoc = epoch |
|
|
251 |
torch.save(model, "saved_model/adm_model.p") |
|
|
252 |
if epoch - best_epoc == patience: |
|
|
253 |
model = torch.load("saved_model/adm_model.p") |
|
|
254 |
break |
|
|
255 |
model.train() |
|
|
256 |
model = torch.load("saved_model/adm_model.p") |
|
|
257 |
return model, aupr_list |
|
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
|
264 |
|