#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sklearn import preprocessing
import numpy as np
import model
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
import sparse
from tqdm import tqdm
import pickle
MODEL_PATH = "model/"
device = torch.device("cuda:0")
EPOCHS = 200
BiAE = model.Bimodal_AE(seq_len = 48, n_features = 1318, ts_embedding_dim = 256, tb_embedding_dim = 256).to(device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(BiAE.parameters(),
lr = 5e-4,
weight_decay = 1e-8)
data = pickle.load(open("data/stay_pretrain_data.p", 'rb'))
for epoch in tqdm(range(EPOCHS)):
loss = 0
data__ = DataLoader(data, batch_size = 128, shuffle = True)
for batch_idx, batch_data in enumerate(data__):
X = batch_data[0].to(torch.float32).to(device)
S = batch_data[1].to(torch.float32).to(device)
optimizer.zero_grad()
outputs = BiAE(X,S).to(device)
train_loss = criterion(outputs, X)
train_loss.backward()
optimizer.step()
loss += train_loss.item()
print("Loss = ", loss)
torch.save(BiAE,MODEL_PATH + 'stay_pretrained.p')