[0375db]: / lib / rfsrc-cv-mtry-nsplit-logical.R

Download this file

198 lines (169 with data), 5.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
bootstraps <- 3
split.rule <- 'logrank'
n.threads <- 20
# Cross-validation variables
ns.splits <- c(0, 5, 10, 15, 20, 30)
ms.try <- c(50, 100, 200, 300, 400)
n.trees.cv <- 500
n.imputations <- 3
cv.n.folds <- 3
n.trees.final <- 2000
n.data <- NA # This is of full dataset...further rows may be excluded in prep
calibration.filename <- paste0(output.filename.base, '-calibration.csv')
# If we've not already done a calibration, then do one
if(!file.exists(calibration.filename)) {
# Create an empty data frame to aggregate stats per fold
cv.performance <- data.frame()
# Items to cross-validate over
cv.vars <- expand.grid(ns.splits, ms.try)
names(cv.vars) <- c('n.splits', 'm.try')
COHORT.cv <- COHORT.bigdata[-test.set, ]
# Run crossvalidations. No need to parallelise because rfsrc is parallelised
for(i in 1:nrow(cv.vars)) {
cat(
'Calibration', i, '...\n'
)
# Get folds for cross-validation
cv.folds <- cvFolds(nrow(COHORT.cv), cv.n.folds)
cv.fold.performance <- data.frame()
for(j in 1:cv.n.folds) {
time.start <- handyTimer()
# Fit model to the training set
surv.model.fit <-
survivalFit(
surv.predict,
COHORT.cv[-cv.folds[[j]],],
model.type = 'rfsrc',
n.trees = n.trees.cv,
split.rule = split.rule,
n.threads = n.threads,
nsplit = cv.vars$n.splits[i],
nimpute = n.imputations,
na.action = 'na.impute',
mtry = cv.vars$m.try[i]
)
time.learn <- handyTimer(time.start)
time.start <- handyTimer()
# Get C-index on validation set
c.index.val <-
cIndex(
surv.model.fit, COHORT.cv[cv.folds[[j]],],
na.action = 'na.impute'
)
time.c.index <- handyTimer(time.start)
time.start <- handyTimer()
# Get C-index on validation set
calibration.score <-
calibrationScore(
calibrationTable(
surv.model.fit, COHORT.cv[cv.folds[[j]],], na.action = 'na.impute'
)
)
time.calibration <- handyTimer(time.start)
# Append the stats we've obtained from this fold
cv.fold.performance <-
rbind(
cv.fold.performance,
data.frame(
calibration = i,
cv.fold = j,
n.splits = cv.vars$n.splits[i],
m.try = cv.vars$m.try[i],
c.index.val,
time.learn,
time.c.index,
time.calibration
)
)
} # End cross-validation loop (j)
# rbind the performance by fold
cv.performance <-
rbind(
cv.performance,
cv.fold.performance
)
# Save output at the end of each loop
write.csv(cv.performance, calibration.filename)
} # End calibration loop (i)
} else { # If we did previously calibrate, load it
cv.performance <- read.csv(calibration.filename)
}
# Find the best calibration...
# First, average performance across cross-validation folds
cv.performance.average <-
aggregate(
c.index.val ~ calibration,
data = cv.performance,
mean
)
# Find the highest value
best.calibration <-
cv.performance.average$calibration[
which.max(cv.performance.average$c.index.val)
]
# And finally, find the first row of that calibration to get the n.bins values
best.calibration.row1 <-
min(which(cv.performance$calibration == best.calibration))
#' ## Fit the final model
#'
#' This may take some time, so we'll cache it if possible...
#+ fit_final_model
surv.model.fit <-
survivalFit(
surv.predict,
COHORT.bigdata[-test.set,],
model.type = 'rfsrc',
n.trees = n.trees.final,
split.rule = split.rule,
n.threads = n.threads,
nimpute = n.imputations,
nsplit = cv.performance[best.calibration.row1, 'n.splits'],
mtry = cv.performance[best.calibration.row1, 'm.try'],
na.action = 'na.impute',
importance = 'permute'
)
# Save the fit object
saveRDS(
surv.model.fit,
paste0(output.filename.base, '-surv-model.rds')
)
surv.model.fit.boot <-
survivalBootstrap(
surv.predict,
COHORT.bigdata[-test.set,], # Training set
COHORT.bigdata[test.set,], # Test set
model.type = 'rfsrc',
n.trees = n.trees.final,
split.rule = split.rule,
n.threads = n.threads,
nimpute = n.imputations,
nsplit = cv.performance[best.calibration.row1, 'n.splits'],
mtry = cv.performance[best.calibration.row1, 'm.try'],
na.action = 'na.impute',
bootstraps = bootstraps
)
# Save the fit object
saveRDS(
surv.model.fit.boot,
paste0(output.filename.base, '-surv-model-bootstraps.rds')
)
# Get C-indices for training and test sets
surv.model.fit.coeffs <- bootStats(surv.model.fit.boot, uncertainty = '95ci')
# Save them to the all-models comparison table
varsToTable(
data.frame(
model = 'rfbigdata',
imputation = FALSE,
discretised = FALSE,
c.index = surv.model.fit.coeffs['c.test', 'val'],
c.index.lower = surv.model.fit.coeffs['c.test', 'lower'],
c.index.upper = surv.model.fit.coeffs['c.test', 'upper'],
calibration.score = surv.model.fit.coeffs['calibration.score', 'val'],
calibration.score.lower =
surv.model.fit.coeffs['calibration.score', 'lower'],
calibration.score.upper =
surv.model.fit.coeffs['calibration.score', 'upper']
),
performance.file,
index.cols = c('model', 'imputation', 'discretised')
)