source('handy.R')
requirePlus(
'foreach',
#'CALIBERdatamanage',
#'CALIBERcodelists',
'CALIBERlookups',
'plyr',
'dplyr',
'ggplot2',
'utils',
'reshape2',
'GGally',
'psych',
'bnlearn',
'rms',
'survival',
'ranger',
'randomForestSRC',
'e1071',
'data.table',
'boot',
install = FALSE
)
readMedicalData <- function(filenames, col.keep, col.class) {
# read the file(s) into a data table
df <- foreach(filename = filenames, .combine = 'rbind') %do% {
fread(
filename,
sep = ',',
select = col.keep,
#colClasses = col.class,
data.table = FALSE
)
}
# go through altering the classes of the columns where specified
for(i in 1:ncol(df)) {
if(col.class[i] == 'factor') {
df[,i] <- factor(df[,i])
} else if(col.class[i] == 'date') {
df[,i] <- as.Date(df[,i])
}
}
# return the data
df
}
getQuantiles <- function(x, probs, duplicate.discard = TRUE) {
breaks <- quantile(x, probs, na.rm = TRUE)
if(duplicate.discard) {
breaks <- unique(breaks)
} else if (sum(duplicated(breaks))) {
stop(
'Non-unique breaks and discarding of duplicates has been disabled. ',
'Please choose different quantiles to split at.'
)
}
breaks
}
binByQuantile <- function(x, probs, duplicate.discard = TRUE) {
# discretises data by binning a vector of values x into quantile-based bins
# defined by probs
breaks <- getQuantiles(x, probs, duplicate.discard = duplicate.discard)
factorNAfix(
cut(
x,
breaks,
include.lowest = TRUE
),
NAval = 'missing'
)
}
binByAbs <- function(x, breaks) {
# discretises data by binning given absolute values of breaks, and includes
# the minimum and maximum values so all data are included
factorNAfix(
cut(
x,
c(min(x, na.rm = TRUE), breaks, max(x, na.rm = TRUE)),
include.lowest = TRUE
),
NAval = 'missing'
)
}
missingToAverage <- function(x) {
if(is.factor(x)) {
# If it's a factor, replace with the most common level
return(NA2val(x, val = modalLevel(x)))
} else {
# If it isn't a factor, replace with the median value
return(NA2val(x, val = median(x, na.rm = TRUE)))
}
}
missingToBig <- function(x) {
# Removes missing values and gives them an extreme (high) value
# Get a value which is definitely far higher than the maximum value, and is
# easy for a human to spot
max.x <- max(x, na.rm = TRUE)
# If the max is less than zero, zero will do
if(max.x < 0) {
really.big.value <- 0
# If the max is zero, then 100 is easy to spot
} else if(max.x == 0) {
really.big.value <- 100
# Finally, if the max value is positive, choose one at least 10x bigger
} else {
really.big.value <- 10*10^ceiling(log10(max.x))
}
# Set the NA values to that number and return
NA2val(x, really.big.value)
}
missingToZero <- function(x) {
NA2val(x, val = 0)
}
missingToSample <- function(x) {
NA2val(x, val = samplePlus(x, replace = TRUE))
}
prepSurvCol <- function(df, col.time, col.event, event.yes) {
# Rename the survival time column
names(df)[names(df) == col.time] <- 'surv_time'
# Create a column denoting censorship or otherwise of events
df$surv_event <- df[, col.event] %in% event.yes
# Remove the event column so we don't use it as a covariate later
df[, col.event] <- NULL
df
}
prepData <- function(
# surv.event cannot be 'surv_event' or will break later!
# The fraction of the data to use as the test set (1 - this will be used as
# the training set)
# Default quantile boundaries for discretisation
df, predictors, process.settings, col.time, col.event, event.yes = NA,
default.quantiles = c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1),
extra.fun = NULL, random.seed = NA, NAval = 'missing', n.keep = NA
) {
# If a random seed was provided, set it
if(!is.na(random.seed)) set.seed(random.seed)
# If we only want n.keep of the data, might as well throw it out now to make
# all the steps from here on faster...
if(!is.na(n.keep)) {
# Keep rows at random to avoid bias
df <- sample.df(df, n.keep)
} else {
# If there was no n.keep, we should still randomise the rows for consistency
df <- sample.df(df, nrow(df))
}
# Add event column to predictors to create full column list
columns <- c(col.time, col.event, predictors)
# Only include the columns we actually need, and don't include any which
# aren't in the data frame because it's possible that some predictors may be
# calculated later, eg during extra.fun
df <- df[, columns[columns %in% names(df)]]
# Go through per predictor and process them
for(col.name in predictors[predictors %in% names(df)]){
# If we have a specific way to process this column, let's do it!
if(col.name %in% process.settings$var) {
j <- match(col.name, process.settings$var)
# Processing method being NA means leave it alone...
if(!is.na(process.settings$method[j])) {
# ...so, if not NA, use the function provided
process.fun <- match.fun(process.settings$method[j])
# If there are no process settings for this, just call the function
if(isExactlyNA(process.settings$settings[[j]])) {
df[, col.name] <- process.fun(df[, col.name])
# Otherwise, call the function with settings
} else {
df[, col.name] <-
process.fun(
df[, col.name],
process.settings$settings[[j]]
)
}
}
# Otherwise, no specific processing specified, so perform defaults
} else {
# If it's a character column, make it a factor
if(is.character(df[, col.name])) {
df[, col.name] <- factor(df[, col.name])
}
# Then, if there are any NAs, go through and make them a level of their own
if(is.factor(df[, col.name]) & anyNA(df[, col.name])){
df[, col.name] <-
factorNAfix(df[, col.name], NAval = NAval)
}
# If it's numerical, then it needs discretising
if(class(df[,col.name]) %in% c('numeric', 'integer')) {
df[,col.name] <-
binByQuantile(df[,col.name], default.quantiles)
# Finally, if it's logical, turn it into a two-level factor
} else if(class(df[,col.name]) == 'logical') {
df[,col.name] <- factor(df[,col.name])
# If there are missing values, fix them
if(anyNA(df[, col.name])) {
factorNAfix(df[, col.name], NAval = NAval)
}
}
}
}
# Sort out the time to event and event class columns
df <- prepSurvCol(df, col.time, col.event, event.yes)
# If there's any more preprocessing to do, do it now!
if(!is.null(extra.fun)) {
df <- extra.fun(df)
}
# Return prepped data
df
}
prepCoxMissing <- function(
df, missing.cols = NA, missingReplace = missingToZero,
missing.suffix = '_missing', NAval = 'missing'
){
# If a list of columns which may contain missing data wasn't provided, then
# find those columns which do, in fact, contain missing data.
# (Check length == 1 or gives a warning if testing a vector.)
if(length(missing.cols) == 1) {
if(is.na(missing.cols)) {
missing.cols <- c()
for(col.name in names(df)) {
if(sum(is.na(df[, col.name])) > 0) {
missing.cols <- c(missing.cols, col.name)
}
}
}
}
# Go through missing.cols, processing appropriately for data type
for(col.name in missing.cols) {
# If it's a factor, simply create a new level for missing values
if(is.factor(df[, col.name])) {
# If it's a factor, NAs can be their own level
df[, col.name] <-
factorNAfix(df[, col.name], NAval = NAval)
} else {
# If it isn't a factor, first create a column designating missing values
df[, paste0(col.name, missing.suffix)] <- is.na(df[, col.name])
# If we want to replace the missing values...
if(!isExactlyNA(missingReplace)) {
# Then, deal with the actual values, depending on variable type
if(is.logical(df[, col.name])) {
# Set the NA values to baseline so they don't contribute to the model
df[is.na(COHORT.scaled[, col.name]), col.name] <- FALSE
} else {
# Set the NA values to the desired value, eg 0 (ie baseline in a Cox
# model with missingToZero), missingToMedian, missingToBig, etc...
df[, col.name] <- missingReplace(df[, col.name])
}
}
}
}
df
}
medianImpute <- function(df, missing.cols = NA) {
# If a list of columns which may contain missing data wasn't provided, then
# find those columns which do, in fact, contain missing data.
# (Check length == 1 or gives a warning if testing a vector.)
if(length(missing.cols) == 1) {
if(is.na(missing.cols)) {
missing.cols <- c()
for(col.name in names(df)) {
if(sum(is.na(df[, col.name])) > 0) {
missing.cols <- c(missing.cols, col.name)
}
}
}
}
# Go through missing.cols, processing appropriately for data type
for(col.name in missing.cols) {
df[, col.name] <- missingToAverage(df[, col.name])
}
df
}
modalLevel <- function(x) {
# Return the name of the most common level in a factor x
tt <- table(x)
names(tt[which.max(tt)])
}
plotConfusionMatrix <- function(truth, prediction, title = NA) {
confusion.matrix <- table(truth, prediction)
# normalise by columns, ie predictions sum to probability 1
confusion.matrix.n <- sweep(confusion.matrix, 1, rowSums(confusion.matrix),
FUN="/")
confusion.matrix.n <- melt(confusion.matrix.n)
confusion.matrix.plot <-
ggplot(confusion.matrix.n,
aes(x=truth,
y=prediction,
fill=value)) +
geom_tile()
if(!is.na(title)) {
confusion.matrix.plot <-
confusion.matrix.plot + ggtitle(title)
}
print(confusion.matrix.plot)
# return the raw confusion matrix
confusion.matrix
}
convertFactorsToBinaryColumns <- function(df) {
covariates <- colnames(df)
return(
model.matrix(
formula(paste0('~', paste0(covariates, collapse = '+'))),
data = df
)[,-1] # -1 to remove 'Intercept' column at start which is all 1s
)
}
getTopStates <- function(df, n = 10) {
# Given a data frame, find the top unique 'states', ie collections of common
# values, and return a vector of which rows belong to each state, and NA for
# those which aren't in the top n states.
# df = a data frame
# n = the number of top states
all.states <- do.call(paste, df)
top.states <-
head(
sort(
table(all.states),
decreasing = TRUE
),
n
)
factor(all.states, levels=names(top.states))
}
cvFolds <- function(n.data, n.folds = 3) {
# Return a list of n.folds vectors containing the numbers 1:n.data, scrambled
# randomly.
split(
sample(1:n.data),
ceiling((1:n.data)/(n.data/n.folds))
)
}
modelType <- function(model.fit) {
# Take a model fit and return a string representing its type so as to deal
# with it correctly
# rfsrc for some reason has multiple classes associated with its fit objects
if('rfsrc' %in% class(model.fit)) {
return('rfsrc')
# Other models are more sensible, and simply returning the class will do
} else {
return(class(model.fit))
}
}
cIndex <- function(model.fit, df, risk.time = 5, tod.round = 0.1, ...) {
if(modelType(model.fit) == 'rfsrc') {
# rfsrc throws an error unless the y-values in the provided data are
# identical to those used to train the model, so recreate the rounded ones..
df$surv_time_round <-
round_any(df$surv_time, tod.round)
# This means we need to use surv_time_round in the formula
surv.time <- 'surv_time_round'
} else {
# Otherwise, our survival time variable is just surv_time
surv.time <- 'surv_time'
}
# Calculate the C-index for a Cox proportional hazards model on data in df
# First, get some risks, or values proportional to them
risk <- getRisk(model.fit, df, ...)
# Then, get the C-index and, since we don't probably want to do any further
# work with it, simply return the numerical value of the index itself.
as.numeric(
survConcordance(
as.formula(paste0('Surv(', surv.time, ', surv_event) ~ risk')),
df
)$concordance
)
}
generalVarImp <-
function(
model.fit, df, vars = NA, risk.time = 5, tod.round = 0.1,
statistic = cIndex, ...
) {
baseline.statistic <- statistic(model.fit, df, risk.time, tod.round, ...)
# If no variables were passed, let's do it on all of the variables
if(isExactlyNA(vars)) {
if(modelType(model.fit) == 'survreg') {
vars <- attr(model.fit$terms, 'term.labels')
} else {
vars <- names(model.fit$xvar)
}
# Then, remove any variables which don't appear in the dataset, because we
# can't test them (this might be interaction terms like age:gender, for
# example)
vars <- vars[vars %in% names(df)]
}
var.imp <- data.frame(
var = vars,
var.imp = NA,
stringsAsFactors = FALSE
)
for(i in 1:nrow(var.imp)) {
# Make a new, temporary data frame
df2 <- df
# Permute values of the sample in question
df2[, var.imp[i, 'var']] <- sample(df[, var.imp[i, 'var']], replace = TRUE)
# Calculate the C-index based on the permuted data
var.statistic <- statistic(model.fit, df2, risk.time, tod.round, ...)
var.imp[i, 'var.imp'] <- baseline.statistic - var.statistic
}
# Return the data frame of variable importances
var.imp
}
modelFactorLevelName <- function(factor.name, level.name, model.type) {
if(model.type == 'cph') {
# factor=Level
return(paste0(factor.name, '=', level.name))
} else if(model.type == 'survreg') {
# factorLevel
return(paste0(factor.name, level.name))
} else if(model.type == 'boot.survreg') {
# factorLevel
return(paste0(factor.name, level.name))
} else if(model.type == 'boot.foreach') {
return(make.names(paste0(factor.name, level.name)))
}
}
cphCoeffs <- function(cph.model, df, surv.predict, model.type = 'cph') {
# Depending on the model type, get a vector of the Cox coefficient names...
if(model.type == 'cph') {
coeff.names <- names(cph.model$coefficients)
coeff.vals <- cph.model$coefficients
} else {
# Otherwise, it will come as a data frame of some kind
coeff.names <- rownames(cph.model)
coeff.vals <- cph.model$val
coeff.lower <- cph.model$lower
coeff.upper <- cph.model$upper
}
# Get the names and levels from each of the factors used to create the
# survival model. Models by cph are good enough to separate with = (ie
# factor=level), but this is not universal so it's a more general solution to
# create these coefficient names from the data in a per-model-type way.
surv.vars.levels <- sapply(surv.predict, function(x){levels(df[,x])})
surv.vars.df <-
data.frame(
var = rep(surv.predict, unlist(sapply(surv.vars.levels, length))),
level = unlist(surv.vars.levels),
val = 0, # betas are zero for all baselines so make that the default val
err = 0, # uncertainty is zero for a baseline too!
stringsAsFactors = FALSE
)
# go through each coefficient in the survival fit...
for(i in 1:nrow(surv.vars.df)) {
# ...create the factor/level coefficient name...
needle <-
modelFactorLevelName(
surv.vars.df[i, 'var'], surv.vars.df[i, 'level'],
model.type
)
# ...find where in the coefficients that name occurs...
if(sum(coeff.names == needle) > 0) {
needle.i <- which(coeff.names == needle)
# ...and set the relevant value and error
surv.vars.df[i, 'val'] <- coeff.vals[needle.i]
surv.vars.df[i, 'lower'] <- coeff.lower[needle.i]
surv.vars.df[i, 'upper'] <- coeff.upper[needle.i]
}
}
surv.vars.df
}
# Create per-patient survival curves from a data frame and a Cox model
cphSurvivalCurves <-
function(
df,
surv.model,
surv.times = max(df$surv_time)*seq(0, 1, length.out = 100)
) {
# return a large, melted data frame of the relevant curves
data.frame(
#anonpatid = rep(df$anonpatid, each = length(surv.times)),
id = rep(1:nrow(df), each = length(surv.times)),
surv_time = rep(df$surv_time, each = length(surv.times)),
surv_event = rep(df$surv_event, each = length(surv.times)),
t = rep(surv.times, times = nrow(df)),
s =
c(
t(
survest(surv.model,
newdata=df,
times=surv.times,
conf.int = FALSE # we don't want confidence intervals
)$surv
)
)
)
}
# Create per-patient survival curves from a data frame and a random forest
rfSurvivalCurves <-
function(
df,
predict.rf
) {
surv.times <- predict.rf$unique.death.times
# return a large, melted data frame of the relevant curves
data.frame(
#anonpatid = rep(df$anonpatid, each = length(surv.times)),
id = rep(1:nrow(df), each = length(surv.times)),
surv_time = rep(df$surv_time, each = length(surv.times)),
surv_event = rep(df$surv_event, each = length(surv.times)),
t = rep(surv.times, times = nrow(df)),
s = c(t(predict.rf$survival))
)
}
getSurvCurves <- function(
df,
predictions,
model.type = 'cph',
surv.times = max(df$surv_time)*seq(0, 1, length.out = 100)
) {
if(model.type == 'cph') {
# return a large, melted data frame of the relevant curves
data.frame(
#anonpatid = rep(df$anonpatid, each = length(surv.times)),
id = rep(1:nrow(df), each = length(surv.times)),
surv_time = rep(df$surv_time, each = length(surv.times)),
surv_event = rep(df$surv_event, each = length(surv.times)),
t = rep(surv.times, times = nrow(df)),
s =
c(
t(
survest(surv.model,
newdata=df,
times=surv.times,
conf.int = FALSE # we don't want confidence intervals
)$surv
)
)
)
} else if(model.type == 'ranger') {
surv.times <- predictions$unique.death.times
# return a large, melted data frame of the relevant curves
data.frame(
#anonpatid = rep(df$anonpatid, each = length(surv.times)),
id = rep(1:nrow(df), each = length(surv.times)),
surv_time = rep(df$surv_time, each = length(surv.times)),
surv_event = rep(df$surv_event, each = length(surv.times)),
t = rep(surv.times, times = nrow(df)),
s = c(t(predictions$survival))
)
} else if(model.type == 'rfsrc') {
surv.times <- predictions$time.interest
# return a large, melted data frame of the relevant curves
data.frame(
#anonpatid = rep(df$anonpatid, each = length(surv.times)),
id = rep(1:nrow(df), each = length(surv.times)),
surv_time = rep(df$surv_time, each = length(surv.times)),
surv_event = rep(df$surv_event, each = length(surv.times)),
t = rep(surv.times, times = nrow(df)),
s = c(t(predictions$survival))
)
}
}
survivalFit <- function(
predict.vars, df, model.type = 'cph',
n.trees = 500, split.rule = 'logrank', n.threads = 1, tod.round = 0.1,
bootstraps = 200, ...
) {
# Depending on model.type, change the name of the variable for survival time
if(model.type %in% c('cph', 'survreg', 'survreg.boot')) {
# Cox models can use straight death time
surv.time = 'surv_time'
} else {
# Random forests need to use rounded death time
surv.time = 'surv_time_round'
df$surv_time_round <-
round_any(df$surv_time, tod.round)
}
# Create a survival formula with the provided variable names...
surv.formula <-
formula(
paste0(
# Survival object made in-formula
'Surv(', surv.time,', surv_event) ~ ',
# Predictor variables then make up the other side
paste(predict.vars, collapse = '+')
)
)
# Then, perform the relevant type of fit depending on the model type requested
if(model.type == 'cph') {
return(
cph(surv.formula, df, surv = TRUE)
)
} else if(model.type == 'survreg') {
return(
survreg(surv.formula, df, dist = 'exponential')
)
} else if(model.type == 'survreg.boot') {
return(
boot(
formula = surv.formula,
data = df,
statistic = bootstrapFit,
fit.fun = survreg,
R = bootstraps,
dist = 'exponential'
)
)
} else if(model.type == 'ranger') {
return(
ranger(
surv.formula,
df,
num.trees = n.trees,
splitrule = split.rule,
num.threads = n.threads,
...
)
)
} else if(model.type == 'rfsrc') {
# rfsrc, if you installed it correctly, controls threading by changing an
# environment variable
options(rf.cores = n.threads)
# Fit and return
return(
rfsrc(
surv.formula,
df,
ntree = n.trees,
...
)
)
}
}
survivalFitBoot <- function(
predict.vars, df, df.test, model.type = 'cph', bootstraps = 200,
filename = NULL, n.threads = 1, n.trees = 500, split.rule = 'logrank',
tod.round = 0.1, ...
) {
# This function should be foreach, but currently not in parallel. Running in
# parallel causes some kind of error which is very hard to debug with the
# calibration score functions (it may be that the LOESS estimation runs out of
# memory, but it's not clear). This error is not reproducible when running the
# processes in serial. This isn't too much of an issue because the slowest
# models are random forests, and these already train in parallel.
# This should therefore be reproduced in foreach, but for now I'll just use a
# for loop so it can write out bootstrap results as you go.
# If implementing parallel, do a nested for/foreach loop combo which does
# 1:(bootstraps/n.threads) in the for and 1:n.threads in the foreach, so you
# can write out after n.threads processes and not lose everything if anything
# bad happens.
# Instantiate a blank data frame
bootstrap.params <- data.frame()
# And set the start bootstrap index to 1
boot.so.far <- 1
# If a filename was specified...
if(!is.null(filename)) {
# ...and it exists already...
if(file.exists(filename)) {
# ...read it and see how far we got
bootstrap.params <- read.csv(filename)
boot.so.far <- nrow(bootstrap.params)
# If we're already done, return the bootstraps
if(boot.so.far >= bootstraps) {
return(bootstrap.params)
}
}
}
# Otherwise, stick with a blank data frame and starting at 1
# Run a for loop to get the bootstrapped parameter estimates.
for(i in boot.so.far:bootstraps) {
# Bootstrap-sampled training set
df.boot <- bootstrapSampleDf(df)
surv.model.fit.i <-
survivalFit(
predict.vars, df.boot, model.type = model.type,
n.trees = n.trees, split.rule = split.rule,
# n.threads to take advantage of random forest parallelisation. Change
# to n.threads = 1 if foreach is parallelised, so everything is done
# in parallel.
n.threads = n.threads,
...
)
# Work out other quantities of interest
var.imp.vector <- bootstrapVarImp(surv.model.fit.i, df.boot, ...)
c.index <- cIndex(surv.model.fit.i, df.test, ...)
# This function causes the error when run in parallel.
calibration.score <- calibrationScoreWrapper(surv.model.fit.i, df.test, ...)
# Some models (eg random forests!) don't return coefficients...so only try
# to add these to the data frame to return from this function if they exist.
if(!is.null(coef(surv.model.fit.i))) {
bootstrap.params <-
rbind(
bootstrap.params,
data.frame(
t(coef(surv.model.fit.i)),
t(var.imp.vector),
c.index,
calibration.score
)
)
} else {
bootstrap.params <-
rbind(
bootstrap.params,
data.frame(
t(var.imp.vector),
c.index,
calibration.score
)
)
}
# At the end of each iteration, save progress if a filename was provided
if(!is.null(filename)){
write.csv(bootstrap.params, filename)
}
}
# At the end of the function, return the parameters
bootstrap.params
}
survivalBootstrap <- function(
predict.vars, df, df.test, model.type = 'survreg',
n.trees = 500, split.rule = 'logrank', n.threads = 1, tod.round = 0.1,
bootstraps = 200, nimpute = 1, nsplit = 0
) {
# Depending on model.type, change the name of the variable for survival time
if(model.type %in% c('survreg')) {
# Cox models can use straight death time
surv.time = 'surv_time'
} else {
# Random forests need to use rounded death time
surv.time = 'surv_time_round'
df$surv_time_round <-
round_any(df$surv_time, tod.round)
}
# Create a survival formula with the provided variable names...
surv.formula <-
formula(
paste0(
# Survival object made in-formula
'Surv(', surv.time,', surv_event) ~ ',
# Predictor variables then make up the other side
paste(predict.vars, collapse = '+')
)
)
# Then, perform the relevant type of fit depending on the model type requested
if(model.type == 'cph') {
stop('model.type cph not yet implemented')
} else if(model.type == 'survreg') {
return(
boot(
formula = surv.formula,
data = df,
statistic = bootstrapFitSurvreg,
R = bootstraps,
parallel = 'multicore',
ncpus = n.threads,
test.data = df.test
)
)
} else if(model.type == 'ranger') {
stop('model.type ranger not yet implemented')
} else if(model.type == 'rfsrc') {
# Make rfsrc single-threaded, so we can parallelise with bootstrap
# (This helps with things like c-index calculation which may not use all
# cores, though in edge cases of very few bootstraps doing it this way will
# slow things down)
options(rf.cores = 1)
return(
boot(
formula = surv.formula,
data = df,
statistic = bootstrapFitRfsrc,
R = bootstraps,
parallel = 'multicore',
ncpus = n.threads,
n.trees = n.trees,
test.data = df.test,
# Boot requires named variables, so can't use ... here. This slight
# kludge means that this will fail unless these three variables are
# explicitly specified in the survivalBootstrap call.
nimpute = nimpute,
nsplit = nsplit
)
)
}
}
bootstrapFit <- function(formula, data, indices, fit.fun) {
# Wrapper function to pass generic fitting functions to boot for
# bootstrapping. This is actually called by boot, so much of this isn't
# specified manually.
#
# Args:
# formula: The formula to fit with, given by the formula argument in boot.
# data: The data to fit, given by the data argument in boot.
# indices: Used internally by boot to select each bootstrap sample.
# fit.fun: The function you'd like to use to fit with, eg lm, cph, survreg,
# etc. You pass this to boot as part of its ... arguments, so
# provide it as fit.fun. It must return something sensible when
# acted on by the coef function.
# ...: Other arguments to your fitting function. This is now a nested
# ..., since you'll put these hypothetical arguments in boot's ...
# to pass here, to pass to your fitting function.
#
# Returns:
# The coefficients of the fit, which are then aggregated over multiple
# passes by boot to construct estimates of variation in parameters.
d <- data[indices,]
fit <- fit.fun(formula, data = d)
return(coef(fit))
}
bootstrapVarImp <- function(fit, data, ...) {
# Variable importance by C-index
var.imp.c.index <- generalVarImp(fit, data, statistic = cIndex, ...)
# Concatenate both into a vector with names to distinguish the two
var.imp.vector <- var.imp.c.index$var.imp
names(var.imp.vector) <- paste0('vimp.c.index.', var.imp.c.index$var)
# Return that vector
var.imp.vector
}
bootstrapFitSurvreg <- function(formula, data, indices, test.data) {
# Wrapper function to pass a survreg fit with c-index calculations to boot.
d <- data[indices,]
fit <- survreg(formula, data = d, dist = 'exponential')
# Get variable importances by both C-index and calibration
var.imp.vector <- bootstrapVarImp(fit, d)
c.index <- cIndex(fit, test.data)
calibration.score <- calibrationScoreWrapper(fit, test.data)
# Return fit coefficients, variable importances, c-index on training data,
# c-index on test data
return(
c(
coef(fit),
var.imp.vector,
c.index = c.index,
calibration.score = calibration.score
)
)
}
bootstrapFitRfsrc <-
function(
formula, data, indices, n.trees, test.data, nimpute, nsplit
)
{
# Wrapper function to pass an rfsrc fit with c-index calculations to boot.
fit <-
rfsrc(
formula, data[indices, ], ntree = n.trees,
nimpute = nimpute, nsplit = nsplit, na.action = 'na.impute'
)
# Check the model calibration on the test set
calibration.table <-
calibrationTable(fit, test.data, na.action = 'na.impute')
calibration.score <- calibrationScore(calibration.table, curve = FALSE)
# Get variable importances by both C-index and calibration
var.imp.vector <- bootstrapVarImp(fit, data[indices, ], na.action = 'na.impute')
# Return fit coefficients, c-index on training data, c-index on test data
return(
c(
var.imp.vector,
c.index = cIndex(fit, test.data, na.action = 'na.impute'),
calibration.score = calibration.score
)
)
}
bootStats <- function(bootfit, uncertainty = 'sd', transform = identity) {
# Return a data frame with the statistics from a bootstrapped fit
#
# Args:
# bootfit: A boot object.
# uncertainty: Function to use for returning uncertainty, defaulting to 'sd'
# which returns the standard deviation.
# transform: Optional transform for the statistics, defaults to identity, ie
# leave the values as they are. Useful if you want the value and
# variance of the exp(statistic), etc.
#
if(uncertainty == 'sd'){
return(
data.frame(
val = transform(bootfit$t0),
err = apply(transform(bootfit$t), 2, sd)
)
)
} else if(uncertainty == '95ci') {
ci <- apply(transform(bootfit$t), 2, quantile, probs = c(0.025, 0.5, 0.975))
return(
data.frame(
val = t(ci)[, 2],
lower = t(ci)[, 1],
upper = t(ci)[, 3],
row.names = names(bootfit$t0)
)
)
} else {
stop("Unknown value '", uncertainty, "' for uncertainty parameter.")
}
}
bootStatsDf <- function(df, transform = identity) {
data.frame(
val = sapply(df, FUN = function(x) {median(transform(x))}),
lower =
sapply(df, FUN = function(x) {quantile(transform(x), probs = c(0.025))}),
upper =
sapply(df, FUN = function(x) {quantile(transform(x), probs = c(0.975))})
)
}
bootMIStats <- function(boot.mi, uncertainty = '95ci', transform = identity) {
# Return a data frame with the statistics from a bootstrapped fit
#
# Args:
# bootfit: A boot object.
# uncertainty: Function to use for returning uncertainty, defaulting to 'sd'
# which returns the standard deviation.
# transform: Optional transform for the statistics, defaults to identity, ie
# leave the values as they are. Useful if you want the value and
# variance of the exp(statistic), etc.
#
boot.mi.combined <-
do.call(
# rbind together...
rbind,
# ...a list of matrices of bootstrap estimates extracted from the list of
# bootstrap fits
lapply(boot.mi, function(x){x$t})
)
if(uncertainty == 'sd'){
return(
data.frame(
val = apply(transform(boot.mi.combined), 2, mean),
err = apply(transform(boot.mi.combined), 2, sd),
row.names = names(boot.mi[[1]]$t0)
)
)
} else if(uncertainty == '95ci') {
ci <-
apply(
transform(boot.mi.combined), 2, quantile, probs = c(0.025, 0.5, 0.975)
)
return(
data.frame(
val = t(ci)[, 2],
lower = t(ci)[, 1],
upper = t(ci)[, 3],
row.names = names(boot.mi[[1]]$t0)
)
)
} else {
stop("Unknown value '", uncertainty, "' for uncertainty parameter.")
}
}
bootstrapDiff <- function(x1, x2, uncertainty = '95ci') {
# Work out the difference between two values calculated by bootstrapping
x2mx1 <-
sample(x2, size = length(x1) * 10, replace = TRUE) -
sample(x1, size = length(x1) * 10, replace = TRUE)
if(uncertainty == '95ci') {
est <- quantile(x2mx1, probs = c(0.5, 0.025, 0.975))
names(est) <- c('val', 'lower', 'upper')
return(est)
} else if(uncertainty == 'sd') {
val <- mean(x2mx1)
stdev <- sd(x2mx1)
return(
c(
val = val,
lower = val - stdev,
upper = val + stdev
)
)
} else {
stop("Unknown value '", uncertainty, "' for uncertainty parameter.")
}
}
negExp <- function(x) {
exp(-x)
}
getRisk <- function(model.fit, df, risk.time = 5, tod.round = 0.1, ...) {
# If needed, create the rounded survival time
if(modelType(model.fit) %in% c('ranger', 'rfsrc')) {
df$surv_time_round <- round_any(df$surv_time, tod.round)
}
# Make predictions for the data df based on the model model.fit if it doesn't
# require special treatment (in which case it will be done manually below)
if(modelType(model.fit) != 'cv.glmnet') {
predictions <- predict(model.fit, df, ...)
}
# Then, for any model other than cph, they will need to be transformed in some
# way to get a proxy for risk...
# If we're dealing with a ranger model, then we need to get a proxy for risk
if(modelType(model.fit) == 'ranger') {
risk.bin <- which.min(abs(predictions$unique.death.times - risk.time))
# Get the chance of having died (ie 1 - survival) for all patients at that
# time (ie in that bin)
predictions <- 1 - predictions$survival[, risk.bin]
} else if(modelType(model.fit) == 'rfsrc') {
# If we're dealing with a randomForestSRC model, extract the 'predicted' var
predictions <- predictions$predicted
} else if(modelType(model.fit) == 'survreg') {
# survreg type models give larger numbers for longer survival...this is a
# hack to make this return C-indices which make sense!
predictions <- max(predictions) - predictions
} else if(modelType(model.fit) == 'cv.glmnet') {
predictions <-
predict(
model.fit,
# Use model which is least complex but still within 1 SE of lowest MSE
s = model.fit$lambda.1se,
# cv.glmnet takes a matrix, not a data frame, and it must be passed with
# time correct dimensions, ie time/event columns removed
newx = df,
...
)
# cv.glmnet predictions are returned as a matrix, so convert to vector
predictions <- as.vector(predictions)
}
predictions
}
getRiskAtTime <- function(model.fit, df, risk.time = 5, ...) {
# If we're dealing with a ranger model, then we need to get a proxy for risk
if(modelType(model.fit) == 'ranger') {
# Make predictions for the data df based on the model model.fit
predictions <- predict(model.fit, df, ...)
risk.bin <- which.min(abs(predictions$unique.death.times - risk.time))
# Get the chance of having died (ie 1 - survival) for all patients at that
# time (ie in that bin)
predictions <- 1 - predictions$survival[, risk.bin]
} else if(modelType(model.fit) == 'rfsrc') {
# Make predictions for the data df based on the model model.fit
predictions <- predict(model.fit, df, ...)
# If we're dealing with a randomForestSRC model, do the same as ranger but
# with different variable names
risk.bin <- which.min(abs(predictions$time.interest - risk.time))
# Get the chance of having died (ie 1 - survival) for all patients at that
# time (ie in that bin)
predictions <- 1 - predictions$survival[, risk.bin]
} else if(modelType(model.fit) == 'survreg') {
# Make predictions for the data df based on the model
# 'quantile' returns the quantiles of risk, ie the 0.01 quantile would mean
# 0.01 ie 1% of patients would be dead by x. Returning the risk of death
# at a time t requires reverse-engineering this table.
# It doesn't make sense to go to p = 1 because technically by any model the
# 100th percentile is at infinity.
# It's really fast, so do 1000 quantiles for accuracy. Could make this a
# passable parameter...
risk.quantiles <- seq(0,0.999, 0.001)
predictions <-
predict(model.fit, df, type = 'quantile', p = risk.quantiles, ...)
predictions <-
# Find the risk quantile...
risk.quantiles[
# ...by choosing the element corresponding to the matrix output of
# predict, which has the same number of rows as df and a column per
# risk.quantiles...
apply(
predictions,
# ...and find the quantile closest to the risk.time being sought
FUN = function (x) {
which.min(abs(x - risk.time))
},
MARGIN = 1
)
]
} else if(modelType(model.fit) == 'survfit') {
# For now, survfit is just a Kaplan-Meier fit, and it only deals with a
# single variable for KM strata. For multiple strata, this would require a
# bit of parsing to turn names like 'age=93, gender=Men' into an n-column
# data frame.
varname <- substring(
names(model.fit$strata)[1], 0,
# Position of the = sign
strPos('=', names(model.fit$strata)[1]) - 1
)
km.df <- data.frame(
var = rep(
# Chop off characters before and including = (eg 'age=') and turn into a
# number (would also need generalising for non-numerics, eg factors)
as.numeric(
substring(
names(model.fit$strata),
# Position of the = sign
strPos('=', names(model.fit$strata)[1]) + 1
)
),
# Repeat each number as many times as there are patients that age
times = model.fit$strata
),
time = model.fit$time,
surv = model.fit$surv
)
risk.by.var <-
data.frame(
var = unique(km.df$var),
risk = NA
)
for(var in unique(km.df$var)) {
# If anyone with that variable value lived long enough for us to make a
# prediction...
if(max(km.df$time[km.df$var == var]) > risk.time) {
# Find the first event after that point, which gives us the survival,
# and do 1 - surv to get risk
risk.by.var$risk[risk.by.var$var == var] <- 1-
km.df$surv[
# The datapoint needs to be for the correct age of patient
km.df$var == var &
# And pick the time which is the smallest value greater than the
# time in which we're interested.
km.df$time ==
minGt(km.df$time[km.df$var == var], risk.time)
]
}
}
# The predictions are then the risk for a given value of var
predictions <-
# join from pylr preserves row order
join(
# Slight kludge...make a data frame with one column called 'var' from
# the var (ie variable, depending on variable!) column of the data
data.frame(var = df[, varname]),
risk.by.var[, c('var', 'risk')]
)$risk
}
# However obtained, return the predictions
predictions
}
partialEffectTable <-
function(
model.fit, df, variable, n.patients = 1000, max.values = 200,
risk.time = 5, ...
) {
# The number of values we look at will be either max.values, or the number
# of unique values if that's lower. Remove NAs because they cause errors.
n.values <- min(max.values, length(NArm(unique(df[,variable]))))
# Take a sample of df, but repeat each one of those samples n.values times
df.sample <- df[rep(sample(1:nrow(df), n.patients), each = n.values),]
# Give each value from the original df an id, so we can keep track
df.sample$id <- rep(1:n.patients, each = n.values)
# Each individual patient from the original sample is then assigned every
# value of the variable we're interested in exploring
df.sample[, variable] <-
sort(
# We sample in case n.values is less than the total number of unique
# values for a given variable
samplePlus(df[, variable], n.values, na.rm = TRUE, only.unique = TRUE)
)
# (This sorted samplePlus will be a factor of n.patients too short, but
# that's OK because it'll just be repeated)
# Use the model to make predictions
df.sample$risk <- getRisk(model.fit, df.sample, risk.time, ...)
# Use ddply to normalise the risk for each patient by the mean risk for that
# patient across all values of variable, thus averaging out any risk offsets
# between patients, and return that data frame.
as.data.frame(
df.sample %>%
group_by(id) %>%
mutate(risk.normalised = risk/mean(risk))
)[, c('id', variable, 'risk.normalised')] # discard all unnecessary columns
}
calibrationTable <- function(
model.fit, df, risk.time = 5, tod.round = 0.1, ...
) {
if(modelType(model.fit) == 'rfsrc') {
# rfsrc throws an error unless the y-values in the provided data are
# identical to those used to train the model, so recreate the rounded ones..
df$surv_time_round <-
round_any(df$surv_time, tod.round)
# This means we need to use surv_time_round in the formula
surv.time <- 'surv_time_round'
} else {
# Otherwise, our survival time variable is just surv_time
surv.time <- 'surv_time'
}
# Get risk values given this model
df$risk <- getRiskAtTime(model.fit, df, risk.time, ...)
# Was there an event? Start with NA, because default is unknown (ie censored)
df$event <- NA
# Event before risk.time
df$event[df$surv_event & df$surv_time <= risk.time] <- TRUE
# Event after, whether censorship or not, means no event by risk.time
df$event[df$surv_time > risk.time] <- FALSE
# Otherwise, censored before risk.time, leave as NA
df[, c('risk', 'event')]
}
calibrationPlot <- function(df, max.points = NA, show.censored = FALSE) {
# Convert risk to numeric, because ggplot treats logicals like categoricals
df$event <- as.numeric(df$event)
# Make points.df which will be used to plot the points (we need to keep the
# full df to make sure the smoothed curve is accurate). If max.points is NA,
# don't do anything, but if it's specified then sample the data frame.
if(!is.na(max.points)) {
if(nrow(df) > max.points) {
points.df <- sample.df(df, max.points)
}
} else {
points.df <- df
}
# Either way, let's manually jitter the points in points.df, because ggplot's
# jitter adds both positive and negative which is confusing
points.no.event <- points.df$event == 0 & !is.na(points.df$event)
points.df$event[points.no.event] <-
runif(sum(points.no.event), min = 0, max = 0.1)
points.event <- points.df$event == 1 & !is.na(points.df$event)
points.df$event[points.event] <-
runif(sum(points.event), min = 0.9, max = 1)
# Start the calibration plot
calibration.plot <-
ggplot(df, aes(x = risk, y = event)) +
# At the back, a 1:1 line for the 'perfect' result
geom_abline(slope = 1, intercept = 0) +
# Then, plot the points
geom_point(data = points.df, alpha = 0.1) +
# axis limits
coord_cartesian(xlim = c(0,1), ylim = c(0,1))
# If the censored points need to be added...
if(show.censored) {
# Create a dummy data frame of censored values to plot
censored.df <- df[is.na(df$event),]
censored.df$event <- 0.5
calibration.plot <-
calibration.plot +
geom_point(
data = censored.df, colour = 'grey', alpha = 0.1,
position = position_jitter(w = 0, h = 0.05)
)
}
# Finally, plot a smoothed calibration curve on top
calibration.plot <-
calibration.plot + geom_smooth()
calibration.plot
}
calibrationScore <- function(
calibration.table, risk.breaks = seq(0, 1, 0.01), curve = FALSE,
extremes = TRUE
) {
#
# extremes: If set to true, this assumes predictions of 0 below 0.5, and 1
# above 0.5, providing a worst-case estimate for cases when the prediction
# model only provides predictions within a narrower range. This allows such
# models to be fairly compared to others with broader predictive values.
#
# * Could rewrite this with the integrate built-in function
# * Not totally sure about the standard error here...I assume just integrating
# the uncertainty region will result in an overestimate?
# Fit a LOESS model to the data
loess.curve <- loess(event ~ risk, data = calibration.table)
# Get the bin widths, which we'll need in a bit when integrating
risk.binwidths <- diff(risk.breaks)
# And the midpoints of the risk bins to calculate predictions at
risk.mids <- risk.breaks[1:(length(risk.breaks) - 1)] + risk.binwidths / 2
predictions <-
predict(loess.curve, data.frame(risk = risk.mids), se = FALSE)
if(anyNA(predictions)) {
if(extremes) {
# Get the bins where we don't have a valid prediction
missing.risks <- risk.mids[is.na(predictions)]
# And predict 0 is < 0.5, 1 if greater, for a worst-case step-function
missing.risks <- as.numeric(missing.risks > 0.5)
# Finally, substitute them in
predictions[is.na(predictions)] <- missing.risks
} else {
# If there are missing values but extremes = FALSE, ie don't extend, then
# issue a warning to let the user know.
if(length(is.na(risk.mids) < 10)) {
warning.examples <- paste(risk.mids[is.na(risk.mids)], collapse = ', ')
} else {
warning.examples <-
paste(
paste(head(risk.mids[is.na(risk.mids)], 3), collapse = ', '),
'...',
paste(tail(risk.mids[is.na(risk.mids)], 3), collapse = ', ')
)
}
warning(
'Some predictions (for risk bins at ', warning.examples, ') return ',
'NA. This means calibration is being performed outside the range of ',
'the data which may mean values are not comparable. Set extremes = ',
'TRUE to assume worst-case predictions beyond the bounds of the ',
'actual predictions.'
)
}
}
curve.area <-
sum(
abs(predictions - risk.mids) * risk.binwidths,
na.rm = TRUE
)
# If the curve was requested...
if(curve) {
# ...return area between lines and standard error, plus the curve
list(
area = curve.area,
curve = predictions
)
} else {
# ...otherwise, just return the summary statistic
return(curve.area)
}
}
calibrationScoreWrapper <- function(
model.fit, df, risk.time = 5, tod.round = 0.1, ...
) {
# Simple wrapper function for working out the calibration score directly from
# model fit, data frame and extra variables if needed.
# Returns 1 - area so higher is better.
1 -
calibrationScore(
calibrationTable(model.fit, df, risk.time, tod.round, ...)
)
}
testSetIndices <- function(df, test.fraction = 1/3, random.seed = NA) {
# Get indices for the test set in a data frame, with a random seed to make the
# process deterministic if requested.
n.data <- nrow(df)
if(!is.na(random.seed)) set.seed(random.seed)
sample.int(n.data, round(n.data * test.fraction))
}
summary2 <- function(x) {
# Practical summary function for summarising medical records data columns
# depending on number of unique values...
if('data.frame' %in% class(x)) {
lapply(x, summary2)
} else {
if(length(unique(x)) < 30) {
if(length(unique(x)) < 10) {
return(round(c(table(x))/length(x), 3)*100)
} else {
summ <- sort(table(x), decreasing = TRUE)
return(
round(
c(
summ[1:5],
other = sum(summ[6:length(summ)]),
missing = sum(is.na(x))
# divide all by the length and turn into %
)/length(x), 3)*100
)
}
} else {
return(
c(
min = min(x, na.rm = TRUE),
max = max(x, na.rm = TRUE),
median = median(x, na.rm = TRUE),
missing = round(sum(is.na(x))/length(x), 3)*100
)
)
}
}
}
lookUpDescriptions <- function(
x, bnf.lookup.filename = '../../data/product.txt'
) {
# Create blank columns for which dictionary a given variable comes from, its
# code in that dictionary, and a human-readable description looked up from the
# CALIBER tables
data("CALIBER_DICT")
# If there's a BNF lookup filename, load that
if(!isExactlyNA(bnf.lookup.filename)) {
bnf.lookup <- fread(bnf.lookup.filename)
}
# Make a vector to hold descriptions, fill it with x so it's a) the right
# length and b) as a fallback
description <- x
thecode <- x # slightly silly name to avoid data table clash with code column
# Look up ICD and OPCS codes
relevant.rows <- startsWith(x, 'hes.icd.')
thecode[relevant.rows] <- textAfter(x, 'hes.icd.')
for(i in which(relevant.rows)) {
# Some of these don't work, so add in an if statement to catch the error
if(
length(CALIBER_DICT[dict == 'icd10' & code == thecode[i], term]) > 0
){
description[i] <-
CALIBER_DICT[dict == 'icd10' & code == thecode[i], term]
} else {
description[i] <- 'ERROR: ICD not matched'
}
}
relevant.rows <- startsWith(x, 'hes.opcs.')
thecode[relevant.rows] <- textAfter(x, 'hes.opcs.')
for(i in which(relevant.rows)) {
if(
length(CALIBER_DICT[dict == 'opcs' & code == thecode[i], term]) > 0
){
description[i] <-
CALIBER_DICT[dict == 'opcs' & code == thecode[i], term]
} else {
description[i] <- 'ERROR: OPCS not matched'
}
}
relevant.rows <- startsWith(x, 'clinical.history.')
thecode[relevant.rows] <- textAfter(x, 'clinical.history.')
for(i in which(relevant.rows)) {
# Some of these don't work, so add in an if statement to catch the error
if(
length(CALIBER_DICT[dict == 'read' & medcode == thecode[i], term]) > 0
){
description[i] <-
CALIBER_DICT[dict == 'read' & medcode == thecode[i], term]
} else {
description[i] <- 'ERROR: medcode not matched'
}
}
relevant.rows <- startsWith(x, 'clinical.values.')
thecode[relevant.rows] <- textAfter(x, 'clinical.values.')
for(i in which(relevant.rows)) {
testtype.datatype <- strsplit(thecode[i], '_', fixed =TRUE)[[1]]
description[i] <-
paste0(
CALIBER_ENTITY[enttype == testtype.datatype[1], description],
', ',
CALIBER_ENTITY[enttype == testtype.datatype[1], testtype.datatype[2], with = FALSE]
)
}
relevant.rows <- startsWith(x, 'bnf.')
thecode[relevant.rows] <- textAfter(x, 'bnf.')
for(i in which(relevant.rows)) {
# Some of these don't work, so add in an if statement to catch the error
if(
length(CALIBER_BNFCODES[bnfcode == thecode[i], bnf]) > 0
){
description[i] <-
CALIBER_BNFCODES[bnfcode == thecode[i], bnf]
# If a BNF product dictionary was supplied
if(!isExactlyNA(bnf.lookup.filename)) {
# If there's a matching BNF code, take the first element of the product
# table (there will often be many because many drugs fit into one code/
# BNF chapter)
if(!is.na(bnf.lookup[bnfcode == description[i], bnfchapter][1])) {
description[i] <- bnf.lookup[bnfcode == description[i], bnfchapter][1]
}
# Otherwise, leave it as the BNF code for future parsing
}
} else {
description[i] <- 'ERROR: BNF code not matched'
}
}
relevant.rows <- startsWith(x, 'tests.enttype.data3.')
thecode[relevant.rows] <- textAfter(x, 'tests.enttype.data3.')
for(i in which(relevant.rows)) {
testtype.datatype <- strsplit(thecode[i], '_', fixed =TRUE)[[1]]
description[i] <-
CALIBER_ENTITY[enttype == testtype.datatype[1], description]
}
description
}
getVarNums <- function(x, frac = 0.2, min = 1) {
# Number of iterations until there are only min variables left
n <- -ceiling(log(x/min)/log(1 - frac))
unique(round(x*((1 - frac)^(n:0))))
}
percentMissing <- function(x) {
sum(is.na(x))/length(x) * 100
}