|
a |
|
b/scripts/export-bigdata.R |
|
|
1 |
################################################################################ |
|
|
2 |
### USER VARIABLES ############################################################# |
|
|
3 |
################################################################################ |
|
|
4 |
|
|
|
5 |
setwd('R:/Pop_Health/Farr_Luscombe/') |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
### Relating to constructed cohort ############################################# |
|
|
9 |
# the R data file containing the patient cohort |
|
|
10 |
cohort.file <- '2_Cohort/COHORT_SCAD_makecohort2.rda' |
|
|
11 |
|
|
|
12 |
# columns to remove |
|
|
13 |
kill.cols <- c('anonpatid', 'pracid','year_of_birth') |
|
|
14 |
|
|
|
15 |
# columns to make relative to indexdate |
|
|
16 |
date.cols <- c('afterentry_acs','afterentry_mi_nos', |
|
|
17 |
'afterentry_nstemi','afterentry_stemi','afterentry_ua', |
|
|
18 |
'crd','date_entry','date_exit','date_mi_endpoint','deathdate','dob','dod', |
|
|
19 |
'dod_combined','earliest_chd','earliest_hf','earliest_mi','earliest_sa', |
|
|
20 |
'earliest_ua','frd','hes_end','hes_start','indexdate','praclcd', |
|
|
21 |
'pracuts','tod','recent_acs','recent_mi_nos','recent_nstemi', |
|
|
22 |
'recent_stemi','recent_ua','smokdate','endpoint_coronary_date', |
|
|
23 |
'endpoint_death_date' |
|
|
24 |
) |
|
|
25 |
|
|
|
26 |
### Relating to other files #################################################### |
|
|
27 |
data.path <- '1a_ExtractedData' |
|
|
28 |
|
|
|
29 |
hes.file <- file.path(data.path, 'hes_diag_epi.csv') |
|
|
30 |
n.top.icd <- 100 |
|
|
31 |
|
|
|
32 |
procedures.file <- file.path(data.path, 'hes_procedures.csv') |
|
|
33 |
n.top.procedures <- 100 |
|
|
34 |
|
|
|
35 |
tests.files <- |
|
|
36 |
file.path( |
|
|
37 |
data.path, |
|
|
38 |
paste0('test.part.', 0:3) |
|
|
39 |
) |
|
|
40 |
# Number of tests to extract |
|
|
41 |
n.top.tests <- 100 |
|
|
42 |
# Find tests as close as possible to the first value here, and no more than the |
|
|
43 |
# second timepoint before it |
|
|
44 |
test.timepoints <- c(0, 183) #days |
|
|
45 |
|
|
|
46 |
clinical.files <- |
|
|
47 |
file.path( |
|
|
48 |
data.path, |
|
|
49 |
paste0('clinical.part.', 0:3) |
|
|
50 |
) |
|
|
51 |
n.top.clinical.values <- 100 |
|
|
52 |
n.top.clinical.history <- 100 |
|
|
53 |
|
|
|
54 |
therapy.files <- |
|
|
55 |
file.path( |
|
|
56 |
data.path, |
|
|
57 |
paste0('therapy.part.', 0:7) |
|
|
58 |
) |
|
|
59 |
n.top.therapy <- 100 |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
################################################################################ |
|
|
63 |
### END USER VARIABLES ######################################################### |
|
|
64 |
################################################################################ |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
### Load the patient cohort to act as a base ################################### |
|
|
68 |
|
|
|
69 |
# load the standard COHORT variable, which is a data table called COHORT |
|
|
70 |
load(cohort.file) |
|
|
71 |
|
|
|
72 |
### Do a bunch of silly fixes on the data ###################################### |
|
|
73 |
# cabg_6mo is 1s and 0s, which should be TRUE and FALSE |
|
|
74 |
COHORT$cabg_6mo <- as.logical(COHORT$cabg_6mo) |
|
|
75 |
# long_nitrate is 1s and NAs, which should be TRUE and FALSE... |
|
|
76 |
COHORT$long_nitrate <- as.logical(COHORT$long_nitrate) |
|
|
77 |
COHORT$long_nitrate[is.na(COHORT$long_nitrate)] <- FALSE |
|
|
78 |
# pci_6mo is 1s and 0s, which should be TRUE and FALSE |
|
|
79 |
COHORT$pci_6mo <- as.logical(COHORT$pci_6mo) |
|
|
80 |
|
|
|
81 |
### Append other data types #################################################### |
|
|
82 |
|
|
|
83 |
# We'll be needing handymedical from here on in |
|
|
84 |
source('Andrew/lib/handymedical.R', chdir = TRUE) |
|
|
85 |
require(CALIBERlookups) |
|
|
86 |
|
|
|
87 |
percentMissing <- function(x, sf = 3) { |
|
|
88 |
round(sum(is.na(x))/length(x), digits = sf)*100 |
|
|
89 |
} |
|
|
90 |
|
|
|
91 |
### Hospital episodes statistics ############################################### |
|
|
92 |
|
|
|
93 |
# read in the hospital data (HES) |
|
|
94 |
hes.diag.epi <- readMedicalData( |
|
|
95 |
hes.file, |
|
|
96 |
c("anonpatid", "epistart", "epiend", "icd"), |
|
|
97 |
c("integer", "date", "date", "factor") |
|
|
98 |
) |
|
|
99 |
|
|
|
100 |
# remove non alphanumerics (trailing -s on some ICD codes) |
|
|
101 |
hes.diag.epi$icd <- gsub('[^[:alnum:]]', '', hes.diag.epi$icd) |
|
|
102 |
|
|
|
103 |
# Now, merge with the indexdate...we only want data before then, because looking |
|
|
104 |
# after it is cheating, and using all data rather than just stuff before may |
|
|
105 |
# distort our choice of variables as some variables may be very common after |
|
|
106 |
# entering the study, but less so before... (This actually isn't much of an |
|
|
107 |
# issue...only 9 variables differ. Still!) |
|
|
108 |
hes.diag.epi <- |
|
|
109 |
merge( |
|
|
110 |
hes.diag.epi, COHORT[, c('anonpatid', 'indexdate')], |
|
|
111 |
by = 'anonpatid', all = TRUE |
|
|
112 |
) |
|
|
113 |
hes.diag.epi$relativedate <- hes.diag.epi$indexdate - hes.diag.epi$epistart |
|
|
114 |
|
|
|
115 |
# Now, remove all the negative relative dates, because they're in the past |
|
|
116 |
hes.diag.epi <- hes.diag.epi[hes.diag.epi$relativedate >= 0, ] |
|
|
117 |
|
|
|
118 |
# get aggregate statistics for each ICD code |
|
|
119 |
hes.by.icd <- hes.diag.epi[, length(unique(anonpatid)), by = icd] |
|
|
120 |
names(hes.by.icd) <- c('icd', 'n.pat') |
|
|
121 |
|
|
|
122 |
# Take the top n by number of patients with that code |
|
|
123 |
top.icd <- |
|
|
124 |
hes.by.icd$icd[order(hes.by.icd$n.pat, decreasing = TRUE)[1:n.top.icd]] |
|
|
125 |
|
|
|
126 |
# And now, let's put how far in the past the patient was first diagnosed with |
|
|
127 |
# each of these things into the table... |
|
|
128 |
|
|
|
129 |
# First, discard all the rows corresponding to non-top ICDs |
|
|
130 |
hes.diag.epi.top <- hes.diag.epi[hes.diag.epi$icd %in% top.icd, ] |
|
|
131 |
# Then, keep only the earliest instance of each per patient, because those are |
|
|
132 |
# the ones we care about |
|
|
133 |
hes.diag.epi.top.earliest <- |
|
|
134 |
hes.diag.epi.top[, min(relativedate), by = c('anonpatid', 'icd')] |
|
|
135 |
|
|
|
136 |
# Per ICD code, add a new column to the cohort and put in numbers |
|
|
137 |
hes.diag.epi.top.earliest <- |
|
|
138 |
dcast( |
|
|
139 |
data = hes.diag.epi.top.earliest, |
|
|
140 |
formula = anonpatid ~ icd, |
|
|
141 |
value.var = "V1" |
|
|
142 |
) |
|
|
143 |
|
|
|
144 |
# Add a prefix to the names to keep track |
|
|
145 |
names(hes.diag.epi.top.earliest)[2:(n.top.icd + 1)] <- |
|
|
146 |
paste0('hes.icd.', names(hes.diag.epi.top.earliest)[2:(n.top.icd + 1)]) |
|
|
147 |
|
|
|
148 |
# Keep the names for when we need to make them relative to the indexdate when |
|
|
149 |
# anonymising later |
|
|
150 |
names.hes.diag.icd <- names(hes.diag.epi.top.earliest)[2:(n.top.icd + 1)] |
|
|
151 |
|
|
|
152 |
# Now, merge with the original cohort |
|
|
153 |
COHORT <- |
|
|
154 |
merge( |
|
|
155 |
COHORT, |
|
|
156 |
hes.diag.epi.top.earliest, |
|
|
157 |
by = c('anonpatid'), |
|
|
158 |
all = TRUE |
|
|
159 |
) |
|
|
160 |
|
|
|
161 |
hes.icd.summary <- |
|
|
162 |
data.frame( |
|
|
163 |
percent.missing = |
|
|
164 |
sort( |
|
|
165 |
sapply( |
|
|
166 |
COHORT[, names(COHORT)[startsWith(names(COHORT), 'hes.icd.')], with = FALSE], |
|
|
167 |
percentMissing |
|
|
168 |
) |
|
|
169 |
) |
|
|
170 |
) |
|
|
171 |
|
|
|
172 |
hes.icd.summary$code <- substring(rownames(hes.icd.summary), 9) |
|
|
173 |
|
|
|
174 |
hes.icd.summary <- merge(hes.icd.summary, CALIBER_DICT[, c('code', 'term')], by = 'code') |
|
|
175 |
|
|
|
176 |
print(hes.icd.summary[order(hes.icd.summary$percent.missing),]) |
|
|
177 |
|
|
|
178 |
### Hospital procedures data ################################################### |
|
|
179 |
|
|
|
180 |
# read in the hospital data (HES) |
|
|
181 |
hes.procedures <- readMedicalData( |
|
|
182 |
procedures.file, |
|
|
183 |
c("anonpatid", "opcs", "evdate"), |
|
|
184 |
c("integer", "factor", "date") |
|
|
185 |
) |
|
|
186 |
|
|
|
187 |
# Now, merge with the indexdate...we only want data before then, because looking |
|
|
188 |
# after it is cheating, and using all data rather than just stuff before may |
|
|
189 |
# distort our choice of variables as some variables may be very common after |
|
|
190 |
# entering the study, but less so before... (14 differ...) |
|
|
191 |
hes.procedures <- |
|
|
192 |
merge( |
|
|
193 |
hes.procedures, COHORT[, c('anonpatid', 'indexdate')], |
|
|
194 |
by = 'anonpatid', all = TRUE |
|
|
195 |
) |
|
|
196 |
hes.procedures$relativedate <- hes.procedures$indexdate - hes.procedures$evdate |
|
|
197 |
|
|
|
198 |
# Now, remove all the negative relative dates, because they're in the past |
|
|
199 |
hes.procedures <- hes.procedures[relativedate >= 0] |
|
|
200 |
|
|
|
201 |
# get aggregate statistics for each OPCS code |
|
|
202 |
hes.by.opcs <- hes.procedures[, length(unique(anonpatid)), by = opcs] |
|
|
203 |
names(hes.by.opcs) <- c('opcs', 'n.pat') |
|
|
204 |
|
|
|
205 |
# Take the top n by number of patients with that code |
|
|
206 |
top.opcs <- |
|
|
207 |
hes.by.opcs$opcs[order(hes.by.opcs$n.pat, decreasing = TRUE)[1:n.top.procedures]] |
|
|
208 |
|
|
|
209 |
# And now, let's put how far in the past the patient was first diagnosed with |
|
|
210 |
# each of these things into the table... |
|
|
211 |
|
|
|
212 |
# First, discard all the rows corresponding to non-top OPCS codes |
|
|
213 |
hes.procedures.top <- hes.procedures[hes.procedures$opcs %in% top.opcs, ] |
|
|
214 |
# Then, keep only the earliest instance of each per patient, because those are |
|
|
215 |
# the ones we care about |
|
|
216 |
hes.procedures.top.earliest <- |
|
|
217 |
hes.procedures.top[, min(relativedate), by = c('anonpatid', 'opcs')] |
|
|
218 |
|
|
|
219 |
# Per OPCS code, add a new column to the cohort and put in numbers |
|
|
220 |
hes.procedures.top.earliest <- |
|
|
221 |
dcast( |
|
|
222 |
data = hes.procedures.top.earliest, |
|
|
223 |
formula = anonpatid ~ opcs, |
|
|
224 |
value.var = "V1" |
|
|
225 |
) |
|
|
226 |
|
|
|
227 |
# Add a prefix to the names to keep track |
|
|
228 |
names(hes.procedures.top.earliest)[2:(n.top.procedures + 1)] <- |
|
|
229 |
paste0('hes.opcs.', names(hes.procedures.top.earliest)[2:(n.top.procedures + 1)]) |
|
|
230 |
|
|
|
231 |
# Keep the names for when we need to make them relative to the indexdate when |
|
|
232 |
# anonymising later |
|
|
233 |
names.procedures.opcs <- names(hes.procedures.top.earliest)[2:(n.top.icd + 1)] |
|
|
234 |
|
|
|
235 |
# Now, merge with the original cohort |
|
|
236 |
COHORT <- |
|
|
237 |
merge( |
|
|
238 |
COHORT, |
|
|
239 |
hes.procedures.top.earliest, |
|
|
240 |
by = c('anonpatid'), |
|
|
241 |
all = TRUE |
|
|
242 |
) |
|
|
243 |
|
|
|
244 |
# Summarise by percent missing |
|
|
245 |
hes.opcs.summary <- |
|
|
246 |
data.frame( |
|
|
247 |
percent.missing = |
|
|
248 |
sort( |
|
|
249 |
sapply( |
|
|
250 |
COHORT[, names(COHORT)[startsWith(names(COHORT), 'hes.opcs.')], with = FALSE], |
|
|
251 |
percentMissing |
|
|
252 |
) |
|
|
253 |
) |
|
|
254 |
) |
|
|
255 |
|
|
|
256 |
hes.opcs.summary$code <- substring(rownames(hes.opcs.summary), 10) |
|
|
257 |
|
|
|
258 |
hes.opcs.summary <- merge(hes.opcs.summary, CALIBER_DICT[, c('code', 'term')], by = 'code') |
|
|
259 |
|
|
|
260 |
print(hes.opcs.summary[order(hes.opcs.summary$percent.missing),]) |
|
|
261 |
|
|
|
262 |
### Test results ############################################################### |
|
|
263 |
|
|
|
264 |
# read in the test data |
|
|
265 |
tests.data <- readMedicalData( |
|
|
266 |
tests.files, |
|
|
267 |
# data1 is operator (eg =, > etc), data2 is value, data 3 is unit of measure |
|
|
268 |
c("anonpatid", "eventdate", "enttype", "data1", "data2", "data3"), |
|
|
269 |
c("integer", "date", "integer", "integer", "numeric", "integer") |
|
|
270 |
) |
|
|
271 |
|
|
|
272 |
# First, discard those where operator is not =, because > and < etc will |
|
|
273 |
# introduce complexity, and drop data1 since it's now useless |
|
|
274 |
tests.data <- tests.data[data1 == 3] |
|
|
275 |
tests.data$data1 <- NULL |
|
|
276 |
|
|
|
277 |
# Now, let's subtract the indexdate from every test so we can choose the ones |
|
|
278 |
# closest to the desired dates... |
|
|
279 |
tests.data <- |
|
|
280 |
merge( |
|
|
281 |
tests.data, COHORT[, c('anonpatid', 'indexdate')], |
|
|
282 |
by = 'anonpatid', all = TRUE |
|
|
283 |
) |
|
|
284 |
tests.data$relativedate <- tests.data$indexdate - tests.data$eventdate |
|
|
285 |
|
|
|
286 |
# Only keep positive values; negative ones are in the future which is cheating! |
|
|
287 |
tests.data <- tests.data[relativedate >= 0] |
|
|
288 |
# Only 89001 have any test results from before the indexdate! |
|
|
289 |
|
|
|
290 |
# Discard any test results from times greater than the longest time ago to check |
|
|
291 |
tests.data <- tests.data[relativedate < test.timepoints[2]] |
|
|
292 |
# And this drops to 57972 in the preceding six months |
|
|
293 |
|
|
|
294 |
# Per patient and per test, keep the smallest relativedate value only |
|
|
295 |
tests.data <- |
|
|
296 |
tests.data[, .SD[which.min(relativedate)], by = list(anonpatid, enttype)] |
|
|
297 |
|
|
|
298 |
# aggregate by test type (enttype, which covers a range of Read codes which can |
|
|
299 |
# mean the same test) and unit of measure (so we can choose the tests with the |
|
|
300 |
# units with the best coverage) |
|
|
301 |
# We do this after all the preprocessing (ie only looking at the most recent |
|
|
302 |
# value per patient before but not too far before the indexdate) because |
|
|
303 |
# otherwise a lot of the top tests change. Presumably |
|
|
304 |
tests.by.test <- |
|
|
305 |
tests.data[, length(unique(anonpatid)), by = c('enttype', 'data3')] |
|
|
306 |
names(tests.by.test) <- c('enttype', 'data3', 'n.pat') |
|
|
307 |
|
|
|
308 |
top.tests <- tests.by.test$enttype[order(tests.by.test$n.pat, decreasing = TRUE)[1:n.top.tests]] |
|
|
309 |
top.units <- tests.by.test$data3[order(tests.by.test$n.pat, decreasing = TRUE)[1:n.top.tests]] |
|
|
310 |
|
|
|
311 |
# Now, discard all the rows corresponding to non-top tests |
|
|
312 |
tests.data <- |
|
|
313 |
tests.data[ |
|
|
314 |
# Needs to be exact match of enttype and variable combination |
|
|
315 |
paste0(enttype, '!!!', data3) %in% paste0(top.tests, '!!!', top.units) |
|
|
316 |
] |
|
|
317 |
|
|
|
318 |
# Make a column per test |
|
|
319 |
tests.wide <- |
|
|
320 |
dcast( |
|
|
321 |
data = tests.data, |
|
|
322 |
formula = anonpatid ~ enttype + data3, |
|
|
323 |
value.var = "data2" |
|
|
324 |
) |
|
|
325 |
|
|
|
326 |
# Add a prefix to the names to keep track |
|
|
327 |
# (There may not be n.top.tests columns here as some get lost during the paring |
|
|
328 |
# down processes above...) |
|
|
329 |
names(tests.wide)[-1] <- |
|
|
330 |
paste0('tests.enttype.data3.', names(tests.wide)[-1]) |
|
|
331 |
|
|
|
332 |
# Now, merge with the original cohort |
|
|
333 |
COHORT <- |
|
|
334 |
merge( |
|
|
335 |
COHORT, |
|
|
336 |
tests.wide, |
|
|
337 |
by = c('anonpatid'), |
|
|
338 |
all = TRUE |
|
|
339 |
) |
|
|
340 |
|
|
|
341 |
|
|
|
342 |
### GP diagnosis data ########################################################## |
|
|
343 |
|
|
|
344 |
# read in the GP data (clinical) |
|
|
345 |
clinical.data <- readMedicalData( |
|
|
346 |
clinical.files, |
|
|
347 |
c("anonpatid", "eventdate", "medcode", "enttype", "data1", "data2", "data3", "data4", "data5", "data6", "data7"), |
|
|
348 |
c("integer", "date", "integer", "integer", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric") |
|
|
349 |
) |
|
|
350 |
|
|
|
351 |
# Now, merge with the indexdate...we only want data before then, because looking |
|
|
352 |
# after it is cheating, and using all data rather than just stuff before may |
|
|
353 |
# distort our choice of variables as some variables may be very common after |
|
|
354 |
# entering the study, but less so before... (14 differ...) |
|
|
355 |
clinical.data <- |
|
|
356 |
merge( |
|
|
357 |
clinical.data, COHORT[, c('anonpatid', 'indexdate')], |
|
|
358 |
by = 'anonpatid', all = TRUE |
|
|
359 |
) |
|
|
360 |
clinical.data$relativedate <- clinical.data$indexdate - clinical.data$eventdate |
|
|
361 |
|
|
|
362 |
# Now, remove all the negative relative dates, because they're in the past |
|
|
363 |
clinical.data <- clinical.data[relativedate >= 0] |
|
|
364 |
|
|
|
365 |
# Find out which enttypes have associated data values, to distinguish purely |
|
|
366 |
# binary variables (like medical history, family history etc) from test results |
|
|
367 |
# and so on which have data1, data2, etc values. |
|
|
368 |
# From a quick scan, anything with any data at all has a data1 value, so we can |
|
|
369 |
# use that as a proxy. |
|
|
370 |
clinical.by.data1 <- clinical.data[, sum(!is.na(data1)), by = enttype] |
|
|
371 |
|
|
|
372 |
# Split into two data tables, the ones with associated data, and without |
|
|
373 |
clinical.history <- |
|
|
374 |
clinical.data[ |
|
|
375 |
enttype %in% clinical.by.data1$enttype[clinical.by.data1$V1 == 0] |
|
|
376 |
] |
|
|
377 |
clinical.values <- |
|
|
378 |
clinical.data[ |
|
|
379 |
enttype %in% clinical.by.data1$enttype[clinical.by.data1$V1 > 0] |
|
|
380 |
] |
|
|
381 |
|
|
|
382 |
### Clinical history |
|
|
383 |
|
|
|
384 |
# get aggregate statistics for each medcode |
|
|
385 |
clinical.history.by.medcode <- |
|
|
386 |
clinical.history[, length(unique(anonpatid)), by = medcode] |
|
|
387 |
names(clinical.history.by.medcode) <- c('medcode', 'n.pat') |
|
|
388 |
|
|
|
389 |
# Print a table of the leading medcodes we've found |
|
|
390 |
print( |
|
|
391 |
merge( |
|
|
392 |
clinical.history.by.medcode[order(n.pat, decreasing = TRUE)[1:100],], |
|
|
393 |
CALIBER_DICT[, c('medcode', 'term')], by = 'medcode' |
|
|
394 |
) |
|
|
395 |
) |
|
|
396 |
|
|
|
397 |
# Take the top n by number of patients with that code |
|
|
398 |
top.history <- |
|
|
399 |
clinical.history.by.medcode$medcode[ |
|
|
400 |
order( |
|
|
401 |
clinical.history.by.medcode$n.pat, decreasing = TRUE |
|
|
402 |
)[1:n.top.clinical.history] |
|
|
403 |
] |
|
|
404 |
|
|
|
405 |
# And now, let's put how far in the past the patient was first diagnosed with |
|
|
406 |
# each of these things into the table... |
|
|
407 |
|
|
|
408 |
# First, discard all the rows corresponding to non-top OPCS codes |
|
|
409 |
clinical.history <- clinical.history[clinical.history$medcode %in% top.history, ] |
|
|
410 |
# Then, keep only the earliest instance of each per patient, because those are |
|
|
411 |
# the ones we care about |
|
|
412 |
clinical.history <- |
|
|
413 |
clinical.history[, min(relativedate), by = c('anonpatid', 'medcode')] |
|
|
414 |
|
|
|
415 |
# Per medcode, add a new column to the cohort and put in numbers |
|
|
416 |
clinical.history <- |
|
|
417 |
dcast( |
|
|
418 |
data = clinical.history, |
|
|
419 |
formula = anonpatid ~ medcode, |
|
|
420 |
value.var = "V1" |
|
|
421 |
) |
|
|
422 |
|
|
|
423 |
# Add a prefix to the names to keep track |
|
|
424 |
names(clinical.history)[2:(n.top.clinical.history + 1)] <- |
|
|
425 |
paste0('clinical.history.', names(clinical.history)[2:(n.top.clinical.history + 1)]) |
|
|
426 |
|
|
|
427 |
# Now, merge with the original cohort |
|
|
428 |
COHORT <- |
|
|
429 |
merge( |
|
|
430 |
COHORT, |
|
|
431 |
clinical.history, |
|
|
432 |
by = c('anonpatid'), |
|
|
433 |
all = TRUE |
|
|
434 |
) |
|
|
435 |
|
|
|
436 |
### Clinical values |
|
|
437 |
|
|
|
438 |
# Next, let's melt the values data by data1, data2 etc. Each potentially |
|
|
439 |
# contains a separate measurement (eg for entity type 13, which is weight, data1 |
|
|
440 |
# is the weight, data2 is the weight centile [always blank in this dataset!] and |
|
|
441 |
# data3 is BMI) |
|
|
442 |
clinical.values <- |
|
|
443 |
melt( |
|
|
444 |
clinical.values, |
|
|
445 |
id.vars = c("anonpatid", "relativedate", "medcode", "enttype"), |
|
|
446 |
measure.vars = paste0("data", 1:7) |
|
|
447 |
) |
|
|
448 |
# Because there are lots of data types, the value column gets coerced to double. |
|
|
449 |
# This is fine for now, because it's all numeric, and whilst some values are |
|
|
450 |
# categorical represented as integers, random forests don't care about that. |
|
|
451 |
|
|
|
452 |
# Remove all NA values |
|
|
453 |
clinical.values <- clinical.values[!is.na(value)] |
|
|
454 |
|
|
|
455 |
# Remove all values measured too long ago |
|
|
456 |
clinical.values <- clinical.values[relativedate <= 183] |
|
|
457 |
|
|
|
458 |
# aggregate by enttype and which data column the test came from |
|
|
459 |
clinical.values.by.type <- |
|
|
460 |
clinical.values[, length(unique(anonpatid)), by = c('enttype', 'variable')] |
|
|
461 |
names(clinical.values.by.type) <- c('enttype', 'variable', 'n.pat') |
|
|
462 |
|
|
|
463 |
top.clinical.enttypes <- |
|
|
464 |
clinical.values.by.type$enttype[order(clinical.values.by.type$n.pat, decreasing = TRUE)[1:n.top.clinical.values]] |
|
|
465 |
top.clinical.dataN <- |
|
|
466 |
clinical.values.by.type$variable[order(clinical.values.by.type$n.pat, decreasing = TRUE)[1:n.top.clinical.values]] |
|
|
467 |
|
|
|
468 |
# Now, discard all the rows corresponding to non-top tests |
|
|
469 |
clinical.values <- |
|
|
470 |
clinical.values[ |
|
|
471 |
# Needs to be exact match of enttype and variable combination |
|
|
472 |
paste0(enttype, '!!!', variable) %in% |
|
|
473 |
paste0(top.clinical.enttypes, '!!!', top.clinical.dataN), |
|
|
474 |
] |
|
|
475 |
|
|
|
476 |
# Per patient and per test, keep the smallest relativedate value only |
|
|
477 |
clinical.values.most.recent <- |
|
|
478 |
clinical.values[, .SD[which.min(relativedate)], by = c('anonpatid', 'enttype', 'variable')] |
|
|
479 |
|
|
|
480 |
# Make a column per test |
|
|
481 |
clinical.values.most.recent.wide <- |
|
|
482 |
dcast( |
|
|
483 |
data = clinical.values.most.recent, |
|
|
484 |
formula = anonpatid ~ enttype + variable, |
|
|
485 |
value.var = "value" |
|
|
486 |
) |
|
|
487 |
|
|
|
488 |
# Add a prefix to the names to keep track |
|
|
489 |
# (There may not be n.top.tests columns here as some get lost during the paring |
|
|
490 |
# down processes above...) |
|
|
491 |
names(clinical.values.most.recent.wide)[-1] <- |
|
|
492 |
paste0('clinical.values.', names(clinical.values.most.recent.wide)[-1]) |
|
|
493 |
|
|
|
494 |
# Now, merge with the original cohort |
|
|
495 |
COHORT <- |
|
|
496 |
merge( |
|
|
497 |
COHORT, |
|
|
498 |
clinical.values.most.recent.wide, |
|
|
499 |
by = c('anonpatid'), |
|
|
500 |
all = TRUE |
|
|
501 |
) |
|
|
502 |
|
|
|
503 |
|
|
|
504 |
### Therapy #################################################################### |
|
|
505 |
|
|
|
506 |
# read in the therapy data |
|
|
507 |
therapy.data <- readMedicalData( |
|
|
508 |
therapy.files, |
|
|
509 |
c("anonpatid", "eventdate", "bnfcode"), |
|
|
510 |
c("integer", "date", "integer") |
|
|
511 |
) |
|
|
512 |
# The other option than bnfcode is prodcode, which refers to specific products |
|
|
513 |
# rather than BNF categories. There are far more of these so, assuming the BNF |
|
|
514 |
# classification is somewhat rational, I'm going to go with that first to |
|
|
515 |
# reduce data sparsity. |
|
|
516 |
|
|
|
517 |
# Now, merge with the indexdate...we only want data before then, because looking |
|
|
518 |
# after it is cheating, and using all data rather than just stuff before may |
|
|
519 |
# distort our choice of variables as some variables may be very common after |
|
|
520 |
# entering the study, but less so before... (14 differ...) |
|
|
521 |
therapy.data <- |
|
|
522 |
merge( |
|
|
523 |
therapy.data, COHORT[, c('anonpatid', 'indexdate')], |
|
|
524 |
by = 'anonpatid', all.x = TRUE |
|
|
525 |
) |
|
|
526 |
|
|
|
527 |
therapy.data$relativedate <- therapy.data$indexdate - therapy.data$eventdate |
|
|
528 |
|
|
|
529 |
# Now, remove all the negative relative dates, because they're in the past |
|
|
530 |
therapy.data <- therapy.data[relativedate >= 0] |
|
|
531 |
# And remove all data which is too far into the past |
|
|
532 |
therapy.data <- therapy.data[relativedate < 366] |
|
|
533 |
|
|
|
534 |
# get aggregate statistics for each BNF code |
|
|
535 |
therapy.by.bnf <- therapy.data[, length(unique(anonpatid)), by = bnfcode] |
|
|
536 |
names(therapy.by.bnf) <- c('bnfcode', 'n.pat') |
|
|
537 |
# Take the top n by number of patients with that code |
|
|
538 |
top.bnf <- |
|
|
539 |
therapy.by.bnf$bnfcode[order(therapy.by.bnf$n.pat, decreasing = TRUE)[1:n.top.therapy]] |
|
|
540 |
|
|
|
541 |
# Discard all the rows corresponding to non-top BNF codes |
|
|
542 |
therapy.data <- therapy.data[therapy.data$bnfcode %in% top.bnf, ] |
|
|
543 |
|
|
|
544 |
# Aggregate by number of prescriptions per patient |
|
|
545 |
therapy.data <- therapy.data[, .N, by = list(anonpatid, bnfcode)] |
|
|
546 |
|
|
|
547 |
# Per BNF code, add a new column to the cohort and put in numbers |
|
|
548 |
therapy.wide <- |
|
|
549 |
dcast( |
|
|
550 |
data = therapy.data, |
|
|
551 |
formula = anonpatid ~ bnfcode, |
|
|
552 |
value.var = "N" |
|
|
553 |
) |
|
|
554 |
|
|
|
555 |
# Add a prefix to the names to keep track |
|
|
556 |
names(therapy.wide)[2:(n.top.therapy + 1)] <- |
|
|
557 |
paste0('bnf.', names(therapy.wide)[2:(n.top.therapy + 1)]) |
|
|
558 |
|
|
|
559 |
# And merge into the overall cohort |
|
|
560 |
COHORT <- |
|
|
561 |
merge( |
|
|
562 |
COHORT, |
|
|
563 |
therapy.wide, |
|
|
564 |
by = c('anonpatid'), |
|
|
565 |
all = TRUE |
|
|
566 |
) |
|
|
567 |
|
|
|
568 |
### Anonymisation steps ######################################################## |
|
|
569 |
|
|
|
570 |
# delete the columns with obvious privacy issues |
|
|
571 |
COHORT[, (kill.cols) := NULL] |
|
|
572 |
|
|
|
573 |
# make the remaining columns relative to the indexdate |
|
|
574 |
indexdate <- as.Date(COHORT$indexdate) |
|
|
575 |
|
|
|
576 |
# date.cols specified |
|
|
577 |
for(date.col in c(date.cols)) { |
|
|
578 |
COHORT[[date.col]] <- |
|
|
579 |
# Do indexdate minus, so this is days in the past |
|
|
580 |
as.numeric(indexdate - as.Date(COHORT[[date.col]])) |
|
|
581 |
# ...and therefore negative values are in the future, hence cheating |
|
|
582 |
COHORT[[date.col]][COHORT[[date.col]] < 0] <- NA |
|
|
583 |
} |
|
|
584 |
# make age an integer |
|
|
585 |
COHORT$age <- round(COHORT$age) |
|
|
586 |
|
|
|
587 |
# make pracregion and ethnicity into categories |
|
|
588 |
lookup_pracregion <- |
|
|
589 |
sample(unique(COHORT$pracregion),length(unique(COHORT$pracregion))) |
|
|
590 |
lookup_ethnicity <- |
|
|
591 |
sample(unique(COHORT$hes_ethnicity),length(unique(COHORT$hes_ethnicity))) |
|
|
592 |
write.csv(lookup_pracregion, 'lookup_pracregion.csv') |
|
|
593 |
write.csv(lookup_ethnicity, 'lookup_ethnicity.csv') |
|
|
594 |
|
|
|
595 |
COHORT$pracregion <- |
|
|
596 |
as.integer(factor(COHORT$pracregion, levels = lookup_pracregion)) |
|
|
597 |
COHORT$hes_ethnicity <- |
|
|
598 |
as.integer(factor(COHORT$hes_ethnicity, levels = lookup_ethnicity)) |
|
|
599 |
|
|
|
600 |
# make IMD score into deciles-ish |
|
|
601 |
COHORT$imd_score <- round(COHORT$imd_score/10) |
|
|
602 |
|
|
|
603 |
write.csv(COHORT, 'cohort-datadriven.csv') |
|
|
604 |
|
|
|
605 |
fake.df <- data.frame(id = 1:10) |
|
|
606 |
for (colname in names(COHORT)) { |
|
|
607 |
fake.df[,colname] <- sample(COHORT[!is.na(COHORT[, colname]), colname], 10) |
|
|
608 |
} |
|
|
609 |
|
|
|
610 |
write.csv(fake.df, 'cohort-sample.csv') |