|
a |
|
b/overview/cohort-tables-full.R |
|
|
1 |
data.filename <- '../../data/cohort-sanitised.csv' |
|
|
2 |
require(data.table) |
|
|
3 |
COHORT <- fread(data.filename) |
|
|
4 |
|
|
|
5 |
percentMissing <- function(x, sf = 3) { |
|
|
6 |
round(sum(is.na(x))/length(x), digits = sf)*100 |
|
|
7 |
} |
|
|
8 |
|
|
|
9 |
# Remove the patients we shouldn't include |
|
|
10 |
COHORT <- |
|
|
11 |
COHORT[ |
|
|
12 |
# remove negative times to death |
|
|
13 |
COHORT$time_death > 0 & |
|
|
14 |
# remove patients who should be excluded |
|
|
15 |
!COHORT$exclude |
|
|
16 |
, |
|
|
17 |
] |
|
|
18 |
|
|
|
19 |
# Age, 5, 50, 95, %missing |
|
|
20 |
print(quantile(COHORT$age, c(0.5, 0.025, 0.975))) |
|
|
21 |
|
|
|
22 |
# Gender |
|
|
23 |
print(table(COHORT$gender)) |
|
|
24 |
print(table(COHORT$gender)/nrow(COHORT)*100) |
|
|
25 |
|
|
|
26 |
# Deprivation, 5, 50, 95, %missing |
|
|
27 |
print(quantile(COHORT$imd_score, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
28 |
print(percentMissing(COHORT$imd_score)) |
|
|
29 |
|
|
|
30 |
# SCAD subtype |
|
|
31 |
print(table(COHORT$diagnosis)/nrow(COHORT)*100) |
|
|
32 |
|
|
|
33 |
# PCI |
|
|
34 |
print(sum(COHORT$pci_6mo)/nrow(COHORT)*100) |
|
|
35 |
|
|
|
36 |
# CABG |
|
|
37 |
print(sum(COHORT$cabg_6mo)/nrow(COHORT)*100) |
|
|
38 |
|
|
|
39 |
# previous/recurrent MI |
|
|
40 |
print(sum(COHORT$hx_mi)/nrow(COHORT)*100) |
|
|
41 |
|
|
|
42 |
# nitrates (listed as 1 and NA not T and F) |
|
|
43 |
print(sum(COHORT$long_nitrate, na.rm = TRUE)/nrow(COHORT)*100) |
|
|
44 |
|
|
|
45 |
# Smoking, by category, %missing |
|
|
46 |
print(table(COHORT$smokstatus)/nrow(COHORT)*100) |
|
|
47 |
print(percentMissing(COHORT$smokstatus)) |
|
|
48 |
|
|
|
49 |
# Hypertension |
|
|
50 |
print(sum(COHORT$hypertension)/nrow(COHORT)*100) |
|
|
51 |
|
|
|
52 |
# Diabetes, yes/no |
|
|
53 |
print( |
|
|
54 |
(sum(COHORT$diabetes == 'Diabetes unspecified type') + |
|
|
55 |
sum(COHORT$diabetes == 'Type 1 diabetes') + |
|
|
56 |
sum(COHORT$diabetes == 'Type 2 diabetes')) /nrow(COHORT)*100 |
|
|
57 |
) |
|
|
58 |
|
|
|
59 |
# Total cholesterol |
|
|
60 |
print(quantile(COHORT$total_chol_6mo, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
61 |
print(percentMissing(COHORT$total_chol_6mo)) |
|
|
62 |
|
|
|
63 |
# HDL |
|
|
64 |
print(quantile(COHORT$hdl_6mo, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
65 |
print(percentMissing(COHORT$hdl_6mo)) |
|
|
66 |
|
|
|
67 |
# Heart failure |
|
|
68 |
print(sum(COHORT$heart_failure)/nrow(COHORT)*100) |
|
|
69 |
|
|
|
70 |
# Peripheral arterial disease |
|
|
71 |
print(sum(COHORT$pad)/nrow(COHORT)*100) |
|
|
72 |
|
|
|
73 |
# Atrial fibrillation |
|
|
74 |
print(sum(COHORT$hx_af)/nrow(COHORT)*100) |
|
|
75 |
|
|
|
76 |
# Stroke |
|
|
77 |
print(sum(COHORT$hx_stroke)/nrow(COHORT)*100) |
|
|
78 |
|
|
|
79 |
# Chronic kidney disease |
|
|
80 |
print(sum(COHORT$hx_renal)/nrow(COHORT)*100) |
|
|
81 |
|
|
|
82 |
# COPD |
|
|
83 |
print(sum(COHORT$hx_copd)/nrow(COHORT)*100) |
|
|
84 |
|
|
|
85 |
# Cancer |
|
|
86 |
print(sum(COHORT$hx_cancer)/nrow(COHORT)*100) |
|
|
87 |
|
|
|
88 |
# Chronic liver disease |
|
|
89 |
print(sum(COHORT$hx_liver)/nrow(COHORT)*100) |
|
|
90 |
|
|
|
91 |
# Depression |
|
|
92 |
print(sum(COHORT$hx_depression)/nrow(COHORT)*100) |
|
|
93 |
|
|
|
94 |
# Anxiety |
|
|
95 |
print(sum(COHORT$hx_anxiety)/nrow(COHORT)*100) |
|
|
96 |
|
|
|
97 |
# Heart rate |
|
|
98 |
print(quantile(COHORT$pulse_6mo, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
99 |
print(percentMissing(COHORT$pulse_6mo)) |
|
|
100 |
|
|
|
101 |
# Creatinine |
|
|
102 |
print(quantile(COHORT$crea_6mo, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
103 |
print(percentMissing(COHORT$crea_6mo)) |
|
|
104 |
|
|
|
105 |
# WCC |
|
|
106 |
print(quantile(COHORT$total_wbc_6mo, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
107 |
print(percentMissing(COHORT$total_wbc_6mo)) |
|
|
108 |
|
|
|
109 |
# Haemoglobin |
|
|
110 |
print(quantile(COHORT$haemoglobin_6mo, c(0.5, 0.025, 0.975), na.rm = TRUE)) |
|
|
111 |
print(percentMissing(COHORT$haemoglobin_6mo)) |
|
|
112 |
|
|
|
113 |
# Follow-up, 5, 50, 95 |
|
|
114 |
print(quantile(COHORT$endpoint_death_date, c(0.5, 0.025, 0.975)))/365.25 |
|
|
115 |
|
|
|
116 |
# Death vs censored, % |
|
|
117 |
print(table(COHORT$endpoint_death)) /nrow(COHORT)*100 |