import torch
import argparse
from datasets import QQRDataset,QQR_data,BertClassificationDataset
from tqdm import tqdm
from gensim.models import KeyedVectors
import time
from torch.utils.data import DataLoader
from models import SemNN,SemLSTM,SemAttention
import os
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer
from transformers import BertForSequenceClassification
model_type1_list = ['SemNN','SemAttention','SemLSTM']
model_type2_list = ['Bert']
def train(args):
batch_size = args.batch_size
lr = args.lr
save_path = args.savepath
data_dir = args.datadir
w2v_path = args.w2v_path
max_length = args.max_length
epochs = args.epochs
model_name = args.model_name
dropout_prob = args.dropout_prob
in_feat = args.in_feat
if model_name in model_type1_list:
begin_time = time.perf_counter()
w2v_model = KeyedVectors.load_word2vec_format(w2v_path,binary=False)
end_time = time.perf_counter()
print("Load {} cost {:.2f}s".format(w2v_path,end_time-begin_time))
w2v_map = w2v_model.key_to_index
elif model_name in model_type2_list:
tokenizer = AutoTokenizer.from_pretrained(w2v_path)
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else 'cpu')
save_path = os.path.join(save_path,model_name)
if not os.path.exists(save_path):
os.makedirs(save_path)
data = QQR_data(data_dir)
if model_name in model_type1_list:
train_dataset = QQRDataset(data.get_train_data(),data.get_labels(),w2v_map=w2v_map,max_length=max_length)
val_dataset = QQRDataset(data.get_dev_data(),data.get_labels(),w2v_map=w2v_map,max_length=max_length)
elif model_name in model_type2_list:
train_dataset = BertClassificationDataset(data.get_train_data(),tokenizer=tokenizer,label_list=data.get_labels(),max_length=max_length)
val_dataset = BertClassificationDataset(data.get_dev_data(),tokenizer=tokenizer,label_list=data.get_labels(),max_length=max_length)
train_examples_num = len(train_dataset)
val_examples_num = len(val_dataset)
dataset = {'train':train_dataset,'val':val_dataset}
len_dataset = {'train':train_examples_num,'val':val_examples_num}
if model_name == "SemNN":
model = SemNN(
in_feat=in_feat,
num_labels=len(data.get_labels()),
dropout_prob=dropout_prob,
w2v_mapping=w2v_model
)
elif model_name == "SemLSTM":
model = SemLSTM(in_feat=in_feat,
num_labels=len(data.get_labels()),
dropout_prob=dropout_prob,
w2v_mapping=w2v_model)
elif model_name == "SemAttention":
model = SemAttention(
in_feat=in_feat,
num_labels = len(data.get_labels()),
dropout_prob=dropout_prob,
w2v_mapping=w2v_model
)
elif model_name == "Bert":
model = BertForSequenceClassification.from_pretrained(w2v_path,num_labels=len(data.get_labels()))
print(model)
model_paramters = model.parameters()
criterion = nn.CrossEntropyLoss()
criterion.to(device)
model.to(device)
optimizer = optim.SGD(model_paramters, lr=lr, momentum=0.9, weight_decay=5e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10,gamma=0.1)
print('Model Name: '+model_name)
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
best_val_acc = 0.0
for epoch in range(epochs):
for phase in ['train','val']:
runing_loss = 0.0
running_corrects = 0.0
#Train or eval
if(phase=='train'):
scheduler.step()
model.train()
else:
model.eval()
dataloader = DataLoader(dataset[phase],batch_size=batch_size,shuffle=True,num_workers=4)
for text_example in tqdm(dataloader):
if model_name in model_type1_list:
text_a_inputs_id = text_example["text_a_inputs_id"].to(device)
text_b_inputs_id = text_example["text_b_inputs_id"].to(device)
text_a_attention_mask = text_example["text_a_attention_mask"].to(device)
text_b_attention_mask = text_example["text_b_attention_mask"].to(device)
elif model_name in model_type2_list:
input_ids = text_example.get('input_ids').to(device)
token_type_ids = text_example.get('token_type_ids').to(device)
attention_mask = text_example.get('attention_mask').to(device)
labels = text_example['labels'].to(device)
optimizer.zero_grad()
if(phase=='train'):
if model_name in model_type1_list:
outputs = model(text_a_inputs_id,text_b_inputs_id,text_a_attention_mask,text_b_attention_mask)
elif model_name in model_type2_list:
outputs = model(input_ids=input_ids,token_type_ids=token_type_ids,attention_mask=attention_mask,return_dict=True).get('logits')
else:
with torch.no_grad():
if model_name in model_type1_list:
outputs = model(text_a_inputs_id,text_b_inputs_id,text_a_attention_mask,text_b_attention_mask)
elif model_name in model_type2_list:
outputs = model(input_ids=input_ids,token_type_ids=token_type_ids,attention_mask=attention_mask,return_dict=True).get('logits')
probs = nn.Softmax(dim=1)(outputs)
preds = torch.max(probs,1)[1]
# print(preds.sum())
loss = criterion(outputs,labels)
if(phase=='train'):
loss.backward()
optimizer.step()
runing_loss += loss.item() * labels.size(0)
running_corrects += torch.sum(preds==labels.data)
epoch_loss = runing_loss/len_dataset.get(phase)
epoch_acc = running_corrects.double()/len_dataset.get(phase)
if(phase=='val'):
if(best_val_acc<epoch_acc):
best_val_acc = epoch_acc
torch.save({
'epoch':epoch+1,
'state_dict':model.state_dict(),
'opt_dict':optimizer.state_dict()
},os.path.join(save_path,'best_model.pth.tar'))
if(epoch==epochs-1):
torch.save({
'epoch':epoch+1,
'state_dict':model.state_dict(),
'opt_dict':optimizer.state_dict()
},os.path.join(save_path,'lastest_model.pth.tar'))
print("[{}] Epoch: {}/{} Loss: {} Acc: {}".format(phase, epoch+1, epochs, epoch_loss, epoch_acc))
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument('--model_name',type=str,default="SemAttention",help="Model name for train [SemNN,SemLSTM,SemAttention,Bert]")
parse.add_argument('--batch_size',type=int,default=8,help="Batch-size for train")
parse.add_argument('--in_feat',type=int,default=100,help="Length of features for embbeding word")
parse.add_argument('--max_length',type=int,default=32,help="Max length for setence")
parse.add_argument('--epochs',type=int,default=50,help="Set epochs for train")
parse.add_argument('--lr',type=float,default=1e-3,help="Learning Rate for train")
parse.add_argument('--dropout_prob',type=float,default=0.1,help="Dropout ratio for dropout layers")
parse.add_argument('--savepath',type=str,default="./results",help="Save dir for trained model")
parse.add_argument('--datadir',type=str,default='./data',help="Data path for train")
parse.add_argument('--gpu',type=str,default='1',help="Gpu id for train")
parse.add_argument('--w2v_path',type=str,default='./tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt',help="Path for w2v_model file")
args = parse.parse_args()
train(args)