[b14ec3]: / eval.py

Download this file

149 lines (111 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import argparse
from datasets import QQRDataset,QQR_data,BertClassificationDataset
from tqdm import tqdm
from gensim.models import KeyedVectors
import time
from torch.utils.data import DataLoader
from models import SemNN,SemLSTM,SemAttention
import os
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer
from transformers import BertForSequenceClassification
model_type1_list = ['SemNN','SemAttention','SemLSTM']
model_type2_list = ['Bert']
def train(args):
batch_size = args.batch_size
data_dir = args.datadir
w2v_path = args.w2v_path
max_length = args.max_length
model_name = args.model_name
in_feat = args.in_feat
dropout_prob = args.dropout_prob
model_path = args.model_path
if model_name in model_type1_list:
begin_time = time.perf_counter()
w2v_model = KeyedVectors.load_word2vec_format(w2v_path,binary=False)
end_time = time.perf_counter()
print("Load {} cost {:.2f}s".format(w2v_path,end_time-begin_time))
w2v_map = w2v_model.key_to_index
elif model_name in model_type2_list:
tokenizer = AutoTokenizer.from_pretrained(w2v_path)
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else 'cpu')
data = QQR_data(data_dir)
if model_name in model_type1_list:
train_dataset = QQRDataset(data.get_train_data(),data.get_labels(),w2v_map=w2v_map,max_length=max_length)
val_dataset = QQRDataset(data.get_dev_data(),data.get_labels(),w2v_map=w2v_map,max_length=max_length)
elif model_name in model_type2_list:
train_dataset = BertClassificationDataset(data.get_train_data(),tokenizer=tokenizer,label_list=data.get_labels(),max_length=max_length)
val_dataset = BertClassificationDataset(data.get_dev_data(),tokenizer=tokenizer,label_list=data.get_labels(),max_length=max_length)
train_examples_num = len(train_dataset)
val_examples_num = len(val_dataset)
dataset = {'train':train_dataset,'val':val_dataset}
len_dataset = {'train':train_examples_num,'val':val_examples_num}
if model_name == "SemNN":
model = SemNN(
in_feat=in_feat,
num_labels=len(data.get_labels()),
dropout_prob=dropout_prob,
w2v_mapping=w2v_model
)
elif model_name == "SemLSTM":
model = SemLSTM(in_feat=in_feat,
num_labels=len(data.get_labels()),
dropout_prob=dropout_prob,
w2v_mapping=w2v_model)
elif model_name == "SemAttention":
model = SemAttention(
in_feat=in_feat,
num_labels = len(data.get_labels()),
dropout_prob=dropout_prob,
w2v_mapping=w2v_model
)
elif model_name == "Bert":
model = BertForSequenceClassification.from_pretrained(w2v_path,num_labels=len(data.get_labels()))
print(model)
checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
model.to(device)
print('Model Name: '+model_name)
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
best_val_acc = 0.0
for phase in ['train','val']:
runing_loss = 0.0
running_corrects = 0.0
model.eval()
dataloader = DataLoader(dataset[phase],batch_size=batch_size,shuffle=True,num_workers=4)
for text_example in tqdm(dataloader):
if model_name in model_type1_list:
text_a_inputs_id = text_example["text_a_inputs_id"].to(device)
text_b_inputs_id = text_example["text_b_inputs_id"].to(device)
text_a_attention_mask = text_example["text_a_attention_mask"].to(device)
text_b_attention_mask = text_example["text_b_attention_mask"].to(device)
elif model_name in model_type2_list:
input_ids = text_example.get('input_ids').to(device)
token_type_ids = text_example.get('token_type_ids').to(device)
attention_mask = text_example.get('attention_mask').to(device)
labels = text_example['labels'].to(device)
with torch.no_grad():
if model_name in model_type1_list:
outputs = model(text_a_inputs_id,text_b_inputs_id,text_a_attention_mask,text_b_attention_mask)
elif model_name in model_type2_list:
outputs = model(input_ids=input_ids,token_type_ids=token_type_ids,attention_mask=attention_mask,return_dict=True).get('logits')
probs = nn.Softmax(dim=1)(outputs)
preds = torch.max(probs,1)[1]
running_corrects += torch.sum(preds==labels.data)
epoch_acc = running_corrects.double()/len_dataset.get(phase)
print("[{}] Acc: {}".format(phase, epoch_acc))
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument('--model_name',type=str,default="SemAttention",help="Model name for train [SemNN,SemLSTM,SemAttention,Bert]")
parse.add_argument('--batch_size',type=int,default=8,help="Batch-size for train")
parse.add_argument('--in_feat',type=int,default=100,help="Length of features for embbeding word")
parse.add_argument('--model_path',type=str,default='./results/SemAttention/best_model.pth.tar',help="Saved model path")
parse.add_argument('--max_length',type=int,default=32,help="Max length for setence")
parse.add_argument('--dropout_prob',type=float,default=0.1,help="Dropout ratio for dropout layers")
parse.add_argument('--datadir',type=str,default='./data',help="Data path for train")
parse.add_argument('--gpu',type=str,default='1',help="Gpu id for train")
parse.add_argument('--w2v_path',type=str,default='./tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt',help="Path for w2v_model file")
args = parse.parse_args()
train(args)