Switch to unified view

a/README.md b/README.md
...
...
11
- the referring doctor
11
- the referring doctor
12
12
13
The system work as follow : 
13
The system work as follow : 
14
14
15
<section align='center'>
15
<section align='center'>
16
    <img src='https://github.com/IKetchup/Intelligent_data_extraction_from_medical_reports/blob/main/images/schema.PNG', height="400"/>
16
    <img src='https://github.com/IKetchup/Intelligent_data_extraction_from_medical_reports/blob/main/images/schema.PNG?raw=true', height="400"/>
17
</section>
17
</section>
18
18
19
## Requirements
19
## Requirements
20
20
21
- Tesseract 5.0.0
21
- Tesseract 5.0.0
...
...
53
    texts = texts + '\jump=================== New repport : ' + file + ' ===================\jump' + text
53
    texts = texts + '\jump=================== New repport : ' + file + ' ===================\jump' + text
54
```
54
```
55
Visual output of ACABS segmentation: 
55
Visual output of ACABS segmentation: 
56
56
57
<section align='center'>
57
<section align='center'>
58
    <img src='https://github.com/IKetchup/Intelligent_data_extraction_from_medical_reports/blob/main/images/acabs_result_fancy.png', height="500"/>
58
    <img src='https://github.com/IKetchup/Intelligent_data_extraction_from_medical_reports/blob/main/images/acabs_result_fancy.png?raw=true', height="500"/>
59
</section>
59
</section>
60
60
61
## Extraction of key information
61
## Extraction of key information
62
62
63
After using ACABS to extract the text, the data need to be annotated (like [annotated_text.json](annotated_text.json)). In order to speed up the annotation use a software like  [ner-annotator](https://github.com/tecoholic/ner-annotator).
63
After using ACABS to extract the text, the data need to be annotated (like [annotated_text.json](annotated_text.json)). In order to speed up the annotation use a software like  [ner-annotator](https://github.com/tecoholic/ner-annotator).
...
...
86
### Use a model
86
### Use a model
87
87
88
See [predictions.ipynb](predictions.ipynb)
88
See [predictions.ipynb](predictions.ipynb)
89
89
90
<section align='center'>
90
<section align='center'>
91
    <img src='https://github.com/IKetchup/Intelligent_data_extraction_from_medical_reports/blob/main/images/pred.png'/>
91
    <img src='https://github.com/IKetchup/Intelligent_data_extraction_from_medical_reports/blob/main/images/pred.png?raw=true'/>
92
</section>
92
</section>