import torch
import torch.nn as nn
from src.rnn.rnn_utils import create_emb_layer
class hybrid(nn.Module):
def __init__(self, vocabulary, sequence_length, weights_matrix, hidden_size, num_layers=2, num_classes=10):
super().__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.conv1 = nn.Sequential(nn.Conv1d(len(vocabulary)+1,
128,
kernel_size=7,
padding=0),
nn.ReLU(),
nn.MaxPool1d(3)
)
self.conv2 = nn.Sequential(nn.Conv1d(128, 128, kernel_size=7, padding=0),
nn.ReLU(),
nn.MaxPool1d(3)
)
self.conv3 = nn.Sequential(nn.Conv1d(128, 128, kernel_size=3, padding=0),
nn.ReLU()
)
self.conv4 = nn.Sequential(nn.Conv1d(128, 128, kernel_size=3, padding=0),
nn.ReLU()
)
input_shape = (1, len(vocabulary)+1, sequence_length)
self.output_dimension = self._get_conv_output(input_shape)
# define linear layers
self.fc1 = nn.Sequential(
nn.Linear(self.output_dimension, 256),
nn.ReLU(),
)
self.embeddings, num_embeddings, embedding_size = create_emb_layer(weights_matrix, True)
self.gru1 = nn.GRU(embedding_size, hidden_size, num_layers, bidirectional = True, batch_first=True)
self.fc2 = nn.Sequential(
nn.Linear(2*hidden_size, 256),
nn.ReLU(),
)
self.fc3 = nn.Linear(512,10)
self.act = nn.Sigmoid()
def _get_conv_output(self, shape):
x = torch.rand(shape)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.size(0), -1)
output_dimension = x.size(1)
return output_dimension
def forward(self,rnninput, cnninput):
cnn_out = self.conv1(cnninput)
cnn_out = self.conv2(cnn_out)
cnn_out = self.conv3(cnn_out)
cnn_out = self.conv4(cnn_out)
cnn_out = cnn_out.view(cnn_out.size(0),-1)
cnn_out = self.fc1(cnn_out)
rnn_out = self.embeddings(rnninput)
rnn_out,_ = self.gru1(rnn_out)
rnn_out = self.fc2(rnn_out[:,-1,:])
x = torch.cat((cnn_out,rnn_out),dim=1)
out = self.fc3(x)
out = self.act(out)
return out