import torch
import torch.nn as nn
from src.rnn.rnn_utils import create_emb_layer
class GRUw2vmodel(nn.Module) :
def __init__(self, weights_matrix, hidden_size, num_layers, device, num_classes = 10) :
super().__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.device = device
self.embeddings, num_embeddings, embedding_size = create_emb_layer(weights_matrix, True)
self.gru1 = nn.GRU(embedding_size, hidden_size, num_layers, batch_first=True)
self.fc1 = nn.Linear(hidden_size, 10)
self.act = nn.Sigmoid()
def forward(self, x):
x = self.embeddings(x)
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(self.device)
gru_out, _ = self.gru1(x, h0)
out = self.fc1(gru_out[:,-1,:])
return self.act(out)