|
a |
|
b/src/hybrid/hybrid_fit.py |
|
|
1 |
|
|
|
2 |
import torch |
|
|
3 |
from src.utils import train_metric |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
def hybrid_fit(epochs, model, hybrid_train_loader, hybrid_val_loader, icdtype, opt_fn,loss_fn, learning_rate, device): |
|
|
8 |
optimizer = opt_fn(model.parameters(), lr=learning_rate) |
|
|
9 |
print('-'*10 + icdtype + '-'*10) |
|
|
10 |
for epoch in range(1,epochs+1): |
|
|
11 |
|
|
|
12 |
model.train() |
|
|
13 |
|
|
|
14 |
train_epoch_loss=0 |
|
|
15 |
train_epoch_accuracy=0 |
|
|
16 |
train_epoch_hammingloss=0 |
|
|
17 |
train_epoch_f1score=0 |
|
|
18 |
|
|
|
19 |
val_epoch_loss=0 |
|
|
20 |
val_epoch_accuracy=0 |
|
|
21 |
val_epoch_hammingloss=0 |
|
|
22 |
val_epoch_f1score=0 |
|
|
23 |
|
|
|
24 |
for rnn_x, cnn_x, y_dict in hybrid_train_loader: |
|
|
25 |
|
|
|
26 |
rnn_x = rnn_x.to(device) |
|
|
27 |
cnn_x = cnn_x.to(device) |
|
|
28 |
|
|
|
29 |
y = y_dict[icdtype] |
|
|
30 |
y = y.to(device) |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
|
34 |
preds=model(rnn_x, cnn_x) |
|
|
35 |
|
|
|
36 |
optimizer.zero_grad() |
|
|
37 |
loss=loss_fn(preds,y) |
|
|
38 |
loss.backward() |
|
|
39 |
optimizer.step() |
|
|
40 |
|
|
|
41 |
accuracy, hammingloss, f1score = train_metric(preds,y) |
|
|
42 |
|
|
|
43 |
train_epoch_loss+=loss.item() |
|
|
44 |
train_epoch_accuracy+=accuracy.item() |
|
|
45 |
train_epoch_hammingloss+=hammingloss |
|
|
46 |
train_epoch_f1score+=f1score |
|
|
47 |
|
|
|
48 |
model.eval() |
|
|
49 |
with torch.no_grad(): |
|
|
50 |
for rnn_x, cnn_x, y_dict in hybrid_val_loader: |
|
|
51 |
|
|
|
52 |
rnn_x = rnn_x.to(device) |
|
|
53 |
cnn_x = cnn_x.to(device) |
|
|
54 |
|
|
|
55 |
y = y_dict[icdtype] |
|
|
56 |
y = y.to(device) |
|
|
57 |
|
|
|
58 |
preds=model(rnn_x, cnn_x) |
|
|
59 |
|
|
|
60 |
loss=loss_fn(preds,y) |
|
|
61 |
accuracy, hammingloss, f1score = train_metric(preds,y) |
|
|
62 |
val_epoch_loss+=loss.item() |
|
|
63 |
val_epoch_accuracy+=accuracy.item() |
|
|
64 |
val_epoch_hammingloss+=hammingloss |
|
|
65 |
val_epoch_f1score+=f1score |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
print("\n") |
|
|
70 |
print('-'*100) |
|
|
71 |
print('Epoch = {}/{}:\n train_loss = {:.4f}, train_accuracy = {:.4f}, train_hammingloss = {:.4f}, train_f1score = {:.4f}\n val_loss = {:.4f}, val_accuracy = {:.4f}, val_hammmingloss = {:.4f}, val_f1score = {:.4f}'.format(epoch |
|
|
72 |
,epochs |
|
|
73 |
,train_epoch_loss/len(hybrid_train_loader) |
|
|
74 |
,train_epoch_accuracy/len(hybrid_train_loader) |
|
|
75 |
,train_epoch_hammingloss/len(hybrid_train_loader) |
|
|
76 |
,train_epoch_f1score/len(hybrid_train_loader) |
|
|
77 |
,val_epoch_loss/len(hybrid_val_loader) |
|
|
78 |
,val_epoch_accuracy/len(hybrid_val_loader) |
|
|
79 |
,val_epoch_hammingloss/len(hybrid_val_loader) |
|
|
80 |
,val_epoch_f1score/len(hybrid_val_loader) |
|
|
81 |
)) |
|
|
82 |
print('-'*100) |
|
|
83 |
print("\n") |
|
|
84 |
|