Download this file

224 lines (202 with data), 22.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import pickle as pk
import numpy as np
import spacy
import torch
import random
from sklearn.tree import _tree
import Searching_des as des
from reply import all_response_msg
from nn_model import NeuralNet
#******************************************* for Device ***********************************************
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# remove warning
import warnings
def warn(*args, **kwargs):
pass
warnings.warn = warn
# ===================================================== LOAD MODELS ==================================================
dtc , le = pk.load(open('./chatbot_modelsave','rb'))
model,second_le = pk.load(open('./chatbot_model','rb'))
ners = pk.load(open('./newsave_model','rb'))
# Load NN Model
FILE = "./data.pth"
data = torch.load(FILE)
# -------------------------------------- initlising Global varible ----------------------
return_input_disease = []
if len(return_input_disease) > 1:
return_input_disease.clear()
disease_first = []
symptoms_get = []
feature_names = ['itching', 'skin_rash', 'nodal_skin_eruptions', 'continuous_sneezing', 'shivering', 'chills', 'joint_pain', 'stomach_pain', 'acidity', 'ulcers_on_tongue', 'muscle_wasting', 'vomiting', 'burning_micturition', 'spotting_ urination', 'fatigue', 'weight_gain', 'anxiety', 'cold_hands_and_feets', 'mood_swings', 'weight_loss', 'restlessness', 'lethargy', 'patches_in_throat', 'irregular_sugar_level', 'cough', 'high_fever', 'sunken_eyes', 'breathlessness', 'sweating', 'dehydration', 'indigestion', 'headache', 'yellowish_skin', 'dark_urine', 'nausea', 'loss_of_appetite', 'pain_behind_the_eyes', 'back_pain', 'constipation', 'abdominal_pain', 'diarrhoea', 'mild_fever', 'yellow_urine', 'yellowing_of_eyes', 'acute_liver_failure', 'fluid_overload', 'swelling_of_stomach', 'swelled_lymph_nodes', 'malaise', 'blurred_and_distorted_vision', 'phlegm', 'throat_irritation', 'redness_of_eyes', 'sinus_pressure', 'runny_nose', 'congestion', 'chest_pain', 'weakness_in_limbs', 'fast_heart_rate', 'pain_during_bowel_movements', 'pain_in_anal_region', 'bloody_stool', 'irritation_in_anus', 'neck_pain', 'dizziness', 'cramps', 'bruising', 'obesity', 'swollen_legs', 'swollen_blood_vessels', 'puffy_face_and_eyes', 'enlarged_thyroid', 'brittle_nails', 'swollen_extremeties', 'excessive_hunger', 'extra_marital_contacts', 'drying_and_tingling_lips', 'slurred_speech', 'knee_pain', 'hip_joint_pain', 'muscle_weakness', 'stiff_neck', 'swelling_joints', 'movement_stiffness', 'spinning_movements', 'loss_of_balance', 'unsteadiness', 'weakness_of_one_body_side', 'loss_of_smell', 'bladder_discomfort', 'foul_smell_of urine', 'continuous_feel_of_urine', 'passage_of_gases', 'internal_itching', 'toxic_look_(typhos)', 'depression', 'irritability', 'muscle_pain', 'altered_sensorium', 'red_spots_over_body', 'belly_pain', 'abnormal_menstruation', 'dischromic _patches', 'watering_from_eyes', 'increased_appetite', 'polyuria', 'family_history', 'mucoid_sputum', 'rusty_sputum', 'lack_of_concentration', 'visual_disturbances', 'receiving_blood_transfusion', 'receiving_unsterile_injections', 'coma', 'stomach_bleeding', 'distention_of_abdomen', 'history_of_alcohol_consumption', 'fluid_overload.1', 'blood_in_sputum', 'prominent_veins_on_calf', 'palpitations', 'painful_walking', 'pus_filled_pimples', 'blackheads', 'scurring', 'skin_peeling', 'silver_like_dusting', 'small_dents_in_nails', 'inflammatory_nails', 'blister', 'red_sore_around_nose', 'yellow_crust_ooze']
nlp = spacy.load("en_core_web_sm")
#============================================== STEP 2 ===================================================
# pridected desiese Step 2
def input_output(present_disease):
value_dicts = {
'(vertigo) Paroymsal Positional Vertigo': ['vomiting', 'headache', 'nausea', 'spinning_movements', 'loss_of_balance', 'unsteadiness'], 'AIDS': ['muscle_wasting', 'patches_in_throat', 'high_fever', 'extra_marital_contacts'], 'Acne': ['skin_rash', 'pus_filled_pimples', 'blackheads', 'scurring'], 'Alcoholic hepatitis': ['vomiting', 'yellowish_skin', 'abdominal_pain', 'swelling_of_stomach', 'distention_of_abdomen', 'history_of_alcohol_consumption', 'fluid_overload.1'], 'Allergy': ['continuous_sneezing', 'shivering', 'chills', 'watering_from_eyes'], 'Arthritis': ['muscle_weakness', 'stiff_neck', 'swelling_joints', 'movement_stiffness', 'painful_walking'], 'Bronchial Asthma': ['fatigue', 'cough', 'high_fever', 'breathlessness', 'family_history', 'mucoid_sputum'], 'Cervical spondylosis': ['back_pain', 'weakness_in_limbs', 'neck_pain', 'dizziness', 'loss_of_balance'], 'Chicken pox': ['itching', 'skin_rash', 'fatigue', 'lethargy', 'high_fever', 'headache', 'loss_of_appetite', 'mild_fever', 'swelled_lymph_nodes', 'malaise', 'red_spots_over_body'], 'Chronic cholestasis': ['itching', 'vomiting', 'yellowish_skin', 'nausea', 'loss_of_appetite', 'abdominal_pain', 'yellowing_of_eyes'], 'Common Cold': ['continuous_sneezing', 'chills', 'fatigue', 'cough', 'high_fever', 'headache', 'swelled_lymph_nodes', 'malaise', 'phlegm', 'throat_irritation', 'redness_of_eyes', 'sinus_pressure', 'runny_nose', 'congestion', 'chest_pain', 'loss_of_smell', 'muscle_pain'], 'Dengue': ['skin_rash', 'chills', 'joint_pain', 'vomiting', 'fatigue', 'high_fever', 'headache', 'nausea', 'loss_of_appetite', 'pain_behind_the_eyes', 'back_pain', 'malaise', 'muscle_pain', 'red_spots_over_body'], 'Diabetes ': ['fatigue', 'weight_loss', 'restlessness', 'lethargy', 'irregular_sugar_level', 'blurred_and_distorted_vision', 'obesity', 'excessive_hunger', 'increased_appetite', 'polyuria'], 'Dimorphic hemmorhoids(piles)': ['constipation', 'pain_during_bowel_movements', 'pain_in_anal_region', 'bloody_stool', 'irritation_in_anus'], 'Drug Reaction': ['itching', 'skin_rash', 'stomach_pain', 'burning_micturition', 'spotting_ urination'], 'Fungal infection': ['itching', 'skin_rash', 'nodal_skin_eruptions', 'dischromic _patches'], 'GERD': ['stomach_pain', 'acidity', 'ulcers_on_tongue', 'vomiting', 'cough', 'chest_pain'], 'Gastroenteritis': ['vomiting', 'sunken_eyes', 'dehydration', 'diarrhoea'], 'Heart attack': ['vomiting', 'breathlessness', 'sweating', 'chest_pain'], 'Hepatitis B': ['itching', 'fatigue', 'lethargy', 'yellowish_skin', 'dark_urine', 'loss_of_appetite', 'abdominal_pain', 'yellow_urine', 'yellowing_of_eyes', 'malaise', 'receiving_blood_transfusion', 'receiving_unsterile_injections'], 'Hepatitis C': ['fatigue', 'yellowish_skin', 'nausea', 'loss_of_appetite', 'yellowing_of_eyes', 'family_history'], 'Hepatitis D': ['joint_pain', 'vomiting', 'fatigue', 'yellowish_skin', 'dark_urine', 'nausea', 'loss_of_appetite', 'abdominal_pain', 'yellowing_of_eyes'], 'Hepatitis E': ['joint_pain', 'vomiting', 'fatigue', 'high_fever', 'yellowish_skin', 'dark_urine', 'nausea', 'loss_of_appetite', 'abdominal_pain', 'yellowing_of_eyes', 'acute_liver_failure', 'coma', 'stomach_bleeding'], 'Hypertension ': ['headache', 'chest_pain', 'dizziness', 'loss_of_balance', 'lack_of_concentration'], 'Hyperthyroidism': ['fatigue', 'mood_swings', 'weight_loss', 'restlessness', 'sweating', 'diarrhoea', 'fast_heart_rate', 'excessive_hunger', 'muscle_weakness', 'irritability', 'abnormal_menstruation'], 'Hypoglycemia': ['vomiting', 'fatigue', 'anxiety', 'sweating', 'headache', 'nausea', 'blurred_and_distorted_vision', 'excessive_hunger', 'drying_and_tingling_lips', 'slurred_speech', 'irritability', 'palpitations'], 'Hypothyroidism': ['fatigue', 'weight_gain', 'cold_hands_and_feets', 'mood_swings', 'lethargy', 'dizziness', 'puffy_face_and_eyes', 'enlarged_thyroid', 'brittle_nails', 'swollen_extremeties', 'depression', 'irritability', 'abnormal_menstruation'], 'Impetigo': ['skin_rash', 'high_fever', 'blister', 'red_sore_around_nose', 'yellow_crust_ooze'], 'Jaundice': ['itching', 'vomiting', 'fatigue', 'weight_loss', 'high_fever', 'yellowish_skin', 'dark_urine', 'abdominal_pain'], 'Malaria': ['chills', 'vomiting', 'high_fever', 'sweating', 'headache', 'nausea', 'diarrhoea', 'muscle_pain'], 'Migraine': ['acidity', 'indigestion', 'headache', 'blurred_and_distorted_vision', 'excessive_hunger', 'stiff_neck', 'depression', 'irritability', 'visual_disturbances'], 'Osteoarthristis': ['joint_pain', 'neck_pain', 'knee_pain', 'hip_joint_pain', 'swelling_joints', 'painful_walking'], 'Paralysis (brain hemorrhage)': ['vomiting', 'headache', 'weakness_of_one_body_side', 'altered_sensorium'], 'Peptic ulcer diseae': ['vomiting', 'indigestion', 'loss_of_appetite', 'abdominal_pain', 'passage_of_gases', 'internal_itching'], 'Pneumonia': ['chills', 'fatigue', 'cough', 'high_fever', 'breathlessness', 'sweating', 'malaise', 'phlegm', 'chest_pain', 'fast_heart_rate', 'rusty_sputum'], 'Psoriasis': ['skin_rash', 'joint_pain', 'skin_peeling', 'silver_like_dusting', 'small_dents_in_nails', 'inflammatory_nails'], 'Tuberculosis': ['chills', 'vomiting', 'fatigue', 'weight_loss', 'cough', 'high_fever', 'breathlessness', 'sweating', 'loss_of_appetite', 'mild_fever', 'yellowing_of_eyes', 'swelled_lymph_nodes', 'malaise', 'phlegm', 'chest_pain', 'blood_in_sputum'], 'Typhoid': ['chills', 'vomiting', 'fatigue', 'high_fever', 'headache', 'nausea', 'constipation', 'abdominal_pain', 'diarrhoea', 'toxic_look_(typhos)', 'belly_pain'], 'Urinary tract infection': ['burning_micturition', 'bladder_discomfort', 'foul_smell_of urine', 'continuous_feel_of_urine'], 'Varicose veins': ['fatigue', 'cramps', 'bruising', 'obesity', 'swollen_legs', 'swollen_blood_vessels', 'prominent_veins_on_calf'], 'hepatitis A': ['joint_pain', 'vomiting', 'yellowish_skin', 'dark_urine', 'nausea', 'loss_of_appetite', 'abdominal_pain', 'diarrhoea', 'mild_fever', 'yellowing_of_eyes', 'muscle_pain']
}
symptoms_given = value_dicts[present_disease[0]]
symptoms_get.clear()
symptoms_get.append(symptoms_given)
# ================================================== NLTK, SPACY ==============================================
# step 0-A
# Create Bag of words
def bag_of_words(tokenize_sentence , all_words):
bag = np.zeros(len(all_words),dtype=np.float32)
for idx , w in enumerate(all_words):
if w in tokenize_sentence:
bag[idx] = 1.0
return bag
# ------------------------------------- Nural Network Model load ------------------------------------
# nltk model data
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]
nn_model = NeuralNet(input_size, hidden_size, output_size).to(device)
nn_model.load_state_dict(model_state)
nn_model.eval()
# Create Nltk model
def nltk_output(msg):
sentence = [token.lemma_ for token in nlp(msg)]
X = bag_of_words(sentence, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X).to(device)
output = nn_model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
return random.choice(all_response_msg[tag])
return None
#************************************************ START TREE AND RECURESION TO FIND DIES ****************************************
# step 1-C
# get and add predicted dieases
def print_disease(node):
node = node[0]
val = node.nonzero()
disease = le.inverse_transform(val[0])
disease_first.clear()
disease_first.append(disease)
input_output(disease)
# step 1-B
# recursion to get dieaseas input
def recurse(node, depth):
tree = dtc
feature_names = ['itching', 'skin_rash', 'nodal_skin_eruptions', 'continuous_sneezing', 'shivering', 'chills', 'joint_pain', 'stomach_pain', 'acidity', 'ulcers_on_tongue', 'muscle_wasting', 'vomiting', 'burning_micturition', 'spotting_ urination', 'fatigue', 'weight_gain', 'anxiety', 'cold_hands_and_feets', 'mood_swings', 'weight_loss', 'restlessness', 'lethargy', 'patches_in_throat', 'irregular_sugar_level', 'cough', 'high_fever', 'sunken_eyes', 'breathlessness', 'sweating', 'dehydration', 'indigestion', 'headache', 'yellowish_skin', 'dark_urine', 'nausea', 'loss_of_appetite', 'pain_behind_the_eyes', 'back_pain', 'constipation', 'abdominal_pain', 'diarrhoea', 'mild_fever', 'yellow_urine', 'yellowing_of_eyes', 'acute_liver_failure', 'fluid_overload', 'swelling_of_stomach', 'swelled_lymph_nodes', 'malaise', 'blurred_and_distorted_vision', 'phlegm', 'throat_irritation', 'redness_of_eyes', 'sinus_pressure', 'runny_nose', 'congestion', 'chest_pain', 'weakness_in_limbs', 'fast_heart_rate', 'pain_during_bowel_movements', 'pain_in_anal_region', 'bloody_stool', 'irritation_in_anus', 'neck_pain', 'dizziness', 'cramps', 'bruising', 'obesity', 'swollen_legs', 'swollen_blood_vessels', 'puffy_face_and_eyes', 'enlarged_thyroid', 'brittle_nails', 'swollen_extremeties', 'excessive_hunger', 'extra_marital_contacts', 'drying_and_tingling_lips', 'slurred_speech', 'knee_pain', 'hip_joint_pain', 'muscle_weakness', 'stiff_neck', 'swelling_joints', 'movement_stiffness', 'spinning_movements', 'loss_of_balance', 'unsteadiness', 'weakness_of_one_body_side', 'loss_of_smell', 'bladder_discomfort', 'foul_smell_of urine', 'continuous_feel_of_urine', 'passage_of_gases', 'internal_itching', 'toxic_look_(typhos)', 'depression', 'irritability', 'muscle_pain', 'altered_sensorium', 'red_spots_over_body', 'belly_pain', 'abnormal_menstruation', 'dischromic _patches', 'watering_from_eyes', 'increased_appetite', 'polyuria', 'family_history', 'mucoid_sputum', 'rusty_sputum', 'lack_of_concentration', 'visual_disturbances', 'receiving_blood_transfusion', 'receiving_unsterile_injections', 'coma', 'stomach_bleeding', 'distention_of_abdomen', 'history_of_alcohol_consumption', 'fluid_overload.1', 'blood_in_sputum', 'prominent_veins_on_calf', 'palpitations', 'painful_walking', 'pus_filled_pimples', 'blackheads', 'scurring', 'skin_peeling', 'silver_like_dusting', 'small_dents_in_nails', 'inflammatory_nails', 'blister', 'red_sore_around_nose', 'yellow_crust_ooze']
disease_input = return_input_disease[0]
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
if name == disease_input:
val = 1
else:
val = 0
if val <= threshold:
recurse(tree_.children_left[node], depth + 1)
else:
recurse(tree_.children_right[node], depth + 1)
else:
present_disease = print_disease(tree_.value[node])
# step 1-A
# Check pattern of input data and extract usefull information
def check_pattern(dis_list,inp):
import re
pred_list=[]
ptr=0
#input hugging face word
try:
des_word = []
if len(des_word) > 1:
des_word.clear()
new_models = ners(f"i am suffering from {inp}" , aggregation_strategy="first")
for result in new_models:
if result['entity_group'] == "Disease" and int(float(result['score'])*100) >= 65 :
des_word.append(result['word'].replace(" ", ""))
regexp = re.compile(des_word[0])
except:
des_word = []
if len(des_word) > 1:
des_word.clear()
des_word.append(inp)
try:
regexp = re.compile(des_word[0])
except:
des_word.append("joint pain")
regexp = re.compile(des_word[0])
for item in dis_list:
if regexp.search(item):
pred_list.append(item)
if(len(pred_list)>0):
# if match found then
return 1,pred_list,des_word[0]
else:
# if match not found or only one same type of item present
return ptr,item,des_word[0]
# step 1
# using model check the passible diesiase can predict by tree and recursions after calling method
def tree_to_code(disease_input):
conf,cnf_dis,desies=check_pattern(feature_names,disease_input)
if conf==1:
if len(cnf_dis) > 1:
output = f"Are you suffering from which type of ' {desies} ' ? Please confirm that: \n"
for num,it in enumerate(cnf_dis):
output += f"\t --> {it} \n"
output += f"\t Note: Please use underscore ( _ ) in place of spacing in the name of disease.\n"
return [output]
else :
output = f"You are suffering from {desies} \n"
return_input_disease.clear()
return_input_disease.append(disease_input)
recurse(0,1)
return [output ,"get_des",symptoms_get]
else:
return ["Ohh!! There were no similar diseases discovered. Please enter a valid symptom."]
# ******************************************** Model Pridection Values ***************************************
#step 3
# Model Predictions send response
def get_pridected_value(symptoms_experiance):
symptoms_dict = {'itching': 0, 'skin_rash': 1, 'nodal_skin_eruptions': 2, 'continuous_sneezing': 3, 'shivering': 4, 'chills': 5, 'joint_pain': 6, 'stomach_pain': 7, 'acidity': 8, 'ulcers_on_tongue': 9, 'muscle_wasting': 10, 'vomiting': 11, 'burning_micturition': 12, 'spotting_ urination': 13, 'fatigue': 14, 'weight_gain': 15, 'anxiety': 16, 'cold_hands_and_feets': 17, 'mood_swings': 18, 'weight_loss': 19, 'restlessness': 20, 'lethargy': 21, 'patches_in_throat': 22, 'irregular_sugar_level': 23, 'cough': 24, 'high_fever': 25, 'sunken_eyes': 26, 'breathlessness': 27, 'sweating': 28, 'dehydration': 29, 'indigestion': 30, 'headache': 31, 'yellowish_skin': 32, 'dark_urine': 33, 'nausea': 34, 'loss_of_appetite': 35, 'pain_behind_the_eyes': 36, 'back_pain': 37, 'constipation': 38, 'abdominal_pain': 39, 'diarrhoea': 40, 'mild_fever': 41, 'yellow_urine': 42, 'yellowing_of_eyes': 43, 'acute_liver_failure': 44, 'fluid_overload': 45, 'swelling_of_stomach': 46, 'swelled_lymph_nodes': 47, 'malaise': 48, 'blurred_and_distorted_vision': 49, 'phlegm': 50, 'throat_irritation': 51, 'redness_of_eyes': 52, 'sinus_pressure': 53, 'runny_nose': 54, 'congestion': 55, 'chest_pain': 56, 'weakness_in_limbs': 57, 'fast_heart_rate': 58, 'pain_during_bowel_movements': 59, 'pain_in_anal_region': 60, 'bloody_stool': 61, 'irritation_in_anus': 62, 'neck_pain': 63, 'dizziness': 64, 'cramps': 65, 'bruising': 66, 'obesity': 67, 'swollen_legs': 68, 'swollen_blood_vessels': 69, 'puffy_face_and_eyes': 70, 'enlarged_thyroid': 71, 'brittle_nails': 72, 'swollen_extremeties': 73, 'excessive_hunger': 74, 'extra_marital_contacts': 75, 'drying_and_tingling_lips': 76, 'slurred_speech': 77, 'knee_pain': 78, 'hip_joint_pain': 79, 'muscle_weakness': 80, 'stiff_neck': 81, 'swelling_joints': 82, 'movement_stiffness': 83, 'spinning_movements': 84, 'loss_of_balance': 85, 'unsteadiness': 86, 'weakness_of_one_body_side': 87, 'loss_of_smell': 88, 'bladder_discomfort': 89, 'foul_smell_of urine': 90, 'continuous_feel_of_urine': 91, 'passage_of_gases': 92, 'internal_itching': 93, 'toxic_look_(typhos)': 94, 'depression': 95, 'irritability': 96, 'muscle_pain': 97, 'altered_sensorium': 98, 'red_spots_over_body': 99, 'belly_pain': 100, 'abnormal_menstruation': 101, 'dischromic _patches': 102, 'watering_from_eyes': 103, 'increased_appetite': 104, 'polyuria': 105, 'family_history': 106, 'mucoid_sputum': 107, 'rusty_sputum': 108, 'lack_of_concentration': 109, 'visual_disturbances': 110, 'receiving_blood_transfusion': 111, 'receiving_unsterile_injections': 112, 'coma': 113, 'stomach_bleeding': 114, 'distention_of_abdomen': 115, 'history_of_alcohol_consumption': 116, 'fluid_overload.1': 117, 'blood_in_sputum': 118, 'prominent_veins_on_calf': 119, 'palpitations': 120, 'painful_walking': 121, 'pus_filled_pimples': 122, 'blackheads': 123, 'scurring': 124, 'skin_peeling': 125, 'silver_like_dusting': 126, 'small_dents_in_nails': 127, 'inflammatory_nails': 128, 'blister': 129, 'red_sore_around_nose': 130, 'yellow_crust_ooze': 131}
pred_des_list = {15: 'Fungal infection', 4: 'Allergy', 16: 'GERD', 9: 'Chronic cholestasis', 14: 'Drug Reaction', 33: 'Peptic ulcer diseae', 1: 'AIDS', 12: 'Diabetes ', 17: 'Gastroenteritis', 6: 'Bronchial Asthma', 23: 'Hypertension ', 30: 'Migraine', 7: 'Cervical spondylosis', 32: 'Paralysis (brain hemorrhage)', 28: 'Jaundice', 29: 'Malaria', 8: 'Chicken pox', 11: 'Dengue', 37: 'Typhoid', 40: 'hepatitis A', 19: 'Hepatitis B', 20: 'Hepatitis C', 21: 'Hepatitis D', 22: 'Hepatitis E', 3: 'Alcoholic hepatitis', 36: 'Tuberculosis', 10: 'Common Cold', 34: 'Pneumonia', 13: 'Dimorphic hemmorhoids(piles)', 18: 'Heart attack', 39: 'Varicose veins', 26: 'Hypothyroidism', 24: 'Hyperthyroidism', 25: 'Hypoglycemia', 31: 'Osteoarthristis', 5: 'Arthritis', 0: '(vertigo) Paroymsal Positional Vertigo', 2: 'Acne', 38: 'Urinary tract infection', 35: 'Psoriasis', 27: 'Impetigo'}
input_vector = np.zeros(len(symptoms_dict))
for item in symptoms_experiance:
input_vector[[symptoms_dict[item]]] = 1
return pred_des_list[model.predict([input_vector])[0]]
# get diesease Description after model preductions
def get_diesese_practions(dieses):
getprecaution = des.model.getPrecaution(dieses.capitalize())
if disease_first[0][0] == dieses :
getdescription = des.model.getDescription(dieses.capitalize())
dieses = dieses
else:
des_first = des.model.getDescription(disease_first[0][0].capitalize())
des_sencond = des.model.getDescription(dieses.capitalize())
getdescription = f"{des_sencond} \n\n {des_first}"
dieses = f"{dieses} or {disease_first[0][0]}"
output = f"You may have {dieses} \n\n {getdescription} \n {getprecaution}\n"
return output
# =============================================== RESPNSE SEND TO USER ========================================
# step 0
# send response to the user
def getresponse(response_msg):
response_msg = response_msg.lower()
try:
response_nn = nltk_output(response_msg)
except:
response_nn = None
if response_nn is not None:
return [response_nn]
else:
output_function = tree_to_code(response_msg)
if len(output_function) > 1 :
return output_function[0] ,output_function[2][0]
elif len(output_function) == 1 :
return output_function