[0d4320]: / data / eicu / preprocess_eicu.py

Download this file

395 lines (323 with data), 13.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
'''
This code is adapted from process steps on eICU of previous works (cited)
https://github.com/Google-Health/records-research/tree/master/graph-convolutional-transformer
'''
import csv
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
import sys
import pickle
import argparse
import numpy as np
from sklearn import model_selection
from scipy.sparse import csr_matrix
class EncounterInfo(object):
def __init__(self, patient_id, encounter_id, encounter_timestamp,
readmission):
self.patient_id = patient_id
self.encounter_id = encounter_id
self.encounter_timestamp = encounter_timestamp
self.readmission = readmission
self.dx_ids = []
self.rx_ids = []
self.labs = {}
self.physicals = []
self.treatments = []
def process_patient(infile, encounter_dict, hour_threshold=24):
inff = open(infile, 'r')
count = 0
patient_dict = {}
for line in csv.DictReader(inff):
if count % 10000 == 0:
sys.stdout.write('%d\r' % count)
sys.stdout.flush()
patient_id = line['patienthealthsystemstayid']
encounter_id = line['patientunitstayid']
encounter_timestamp = -int(line['hospitaladmitoffset'])
if patient_id not in patient_dict:
patient_dict[patient_id] = []
patient_dict[patient_id].append((encounter_timestamp, encounter_id))
inff.close()
print('')
patient_dict_sorted = {}
for patient_id, time_enc_tuples in patient_dict.items():
patient_dict_sorted[patient_id] = sorted(time_enc_tuples)
enc_readmission_dict = {}
for patient_id, time_enc_tuples in patient_dict_sorted.items():
for time_enc_tuple in time_enc_tuples[:-1]:
enc_id = time_enc_tuple[1]
enc_readmission_dict[enc_id] = True
last_enc_id = time_enc_tuples[-1][1]
enc_readmission_dict[last_enc_id] = False
inff = open(infile, 'r')
count = 0
for line in csv.DictReader(inff):
if count % 10000 == 0:
sys.stdout.write('%d\r' % count)
sys.stdout.flush()
patient_id = line['patienthealthsystemstayid']
encounter_id = line['patientunitstayid']
encounter_timestamp = -int(line['hospitaladmitoffset'])
discharge_status = line['unitdischargestatus']
duration_minute = float(line['unitdischargeoffset'])
readmission = enc_readmission_dict[encounter_id]
if duration_minute > 60. * hour_threshold:
continue
ei = EncounterInfo(patient_id, encounter_id, encounter_timestamp,
readmission)
if encounter_id in encounter_dict:
print('Duplicate encounter ID!!')
sys.exit(0)
encounter_dict[encounter_id] = ei
count += 1
inff.close()
print('')
return encounter_dict
def process_admission_dx(infile, encounter_dict):
inff = open(infile, 'r')
count = 0
missing_eid = 0
for line in csv.DictReader(inff):
if count % 10000 == 0:
sys.stdout.write('%d\r' % count)
sys.stdout.flush()
encounter_id = line['patientunitstayid']
dx_id = line['admitdxpath'].lower()
if encounter_id not in encounter_dict:
missing_eid += 1
continue
encounter_dict[encounter_id].dx_ids.append(dx_id)
count += 1
inff.close()
print('')
print('Admission Diagnosis without Encounter ID: %d' % missing_eid)
return encounter_dict
def process_diagnosis(infile, encounter_dict):
inff = open(infile, 'r')
count = 0
missing_eid = 0
for line in csv.DictReader(inff):
if count % 10000 == 0:
sys.stdout.write('%d\r' % count)
sys.stdout.flush()
encounter_id = line['patientunitstayid']
dx_id = line['diagnosisstring'].lower()
if encounter_id not in encounter_dict:
missing_eid += 1
continue
encounter_dict[encounter_id].dx_ids.append(dx_id)
count += 1
inff.close()
print('')
print('Diagnosis without Encounter ID: %d' % missing_eid)
return encounter_dict
def process_treatment(infile, encounter_dict):
inff = open(infile, 'r')
count = 0
missing_eid = 0
for line in csv.DictReader(inff):
if count % 10000 == 0:
sys.stdout.write('%d\r' % count)
sys.stdout.flush()
encounter_id = line['patientunitstayid']
treatment_id = line['treatmentstring'].lower()
if encounter_id not in encounter_dict:
missing_eid += 1
continue
encounter_dict[encounter_id].treatments.append(treatment_id)
count += 1
inff.close()
print('')
print('Treatment without Encounter ID: %d' % missing_eid)
print('Accepted treatments: %d' % count)
return encounter_dict
def build_seqex(enc_dict,
skip_duplicate=False,
min_num_codes=1,
max_num_codes=50):
key_list = []
seqex_list = []
dx_str2int = {}
treat_str2int = {}
num_cut = 0
num_duplicate = 0
count = 0
num_dx_ids = 0
num_treatments = 0
num_unique_dx_ids = 0
num_unique_treatments = 0
min_dx_cut = 0
min_treatment_cut = 0
max_dx_cut = 0
max_treatment_cut = 0
num_readmission = 0
for _, enc in enc_dict.items():
if skip_duplicate:
if (len(enc.dx_ids) > len(set(enc.dx_ids)) or
len(enc.treatments) > len(set(enc.treatments))):
num_duplicate += 1
continue
if len(set(enc.dx_ids)) < min_num_codes:
min_dx_cut += 1
continue
if len(set(enc.treatments)) < min_num_codes:
min_treatment_cut += 1
continue
if len(set(enc.dx_ids)) > max_num_codes:
max_dx_cut += 1
continue
if len(set(enc.treatments)) > max_num_codes:
max_treatment_cut += 1
continue
count += 1
num_dx_ids += len(enc.dx_ids)
num_treatments += len(enc.treatments)
num_unique_dx_ids += len(set(enc.dx_ids))
num_unique_treatments += len(set(enc.treatments))
for dx_id in enc.dx_ids:
if dx_id not in dx_str2int:
dx_str2int[dx_id] = len(dx_str2int)
for treat_id in enc.treatments:
if treat_id not in treat_str2int:
treat_str2int[treat_id] = len(treat_str2int)
seqex = tf.train.SequenceExample()
seqex.context.feature['patientId'].bytes_list.value.append(
bytes(enc.patient_id + ':' +enc.encounter_id, 'utf-8'))
if enc.readmission:
seqex.context.feature['label'].int64_list.value.append(1)
num_readmission += 1
else:
seqex.context.feature['label'].int64_list.value.append(0)
dx_ids = seqex.feature_lists.feature_list['dx_ids']
dx_ids.feature.add().bytes_list.value.extend(list([bytes(s, 'utf-8') for s in set(enc.dx_ids)]))
dx_int_list = [dx_str2int[item] for item in list(set(enc.dx_ids))]
dx_ints = seqex.feature_lists.feature_list['dx_ints']
dx_ints.feature.add().int64_list.value.extend(dx_int_list)
proc_ids = seqex.feature_lists.feature_list['proc_ids']
proc_ids.feature.add().bytes_list.value.extend(list([bytes(s, 'utf-8') for s in set(enc.treatments)]))
proc_int_list = [treat_str2int[item] for item in list(set(enc.treatments))]
proc_ints = seqex.feature_lists.feature_list['proc_ints']
proc_ints.feature.add().int64_list.value.extend(proc_int_list)
seqex_list.append(seqex)
key = seqex.context.feature['patientId'].bytes_list.value[0]
key_list.append(key)
print('Filtered encounters due to duplicate codes: %d' % num_duplicate)
print('Filtered encounters due to thresholding: %d' % num_cut)
print('Average num_dx_ids: %f' % (num_dx_ids / count))
print('Average num_treatments: %f' % (num_treatments / count))
print('Average num_unique_dx_ids: %f' % (num_unique_dx_ids / count))
print('Average num_unique_treatments: %f' % (num_unique_treatments / count))
print('Min dx cut: %d' % min_dx_cut)
print('Min treatment cut: %d' % min_treatment_cut)
print('Max dx cut: %d' % max_dx_cut)
print('Max treatment cut: %d' % max_treatment_cut)
print('Number of readmission: %d' % num_readmission)
return key_list, seqex_list, dx_str2int, treat_str2int
def select_train_valid_test(key_list, random_seed=0):
train_id, val_id = model_selection.train_test_split(
key_list, test_size=0.2, random_state=random_seed)
test_id, val_id = model_selection.train_test_split(
val_id, test_size=0.5, random_state=random_seed)
return train_id, val_id, test_id
def get_partitions(seqex_list, id_set=None):
total_visit = 0
new_seqex_list = []
for seqex in seqex_list:
if total_visit % 1000 == 0:
sys.stdout.write('Visit count: %d\r' % total_visit)
sys.stdout.flush()
key = seqex.context.feature['patientId'].bytes_list.value[0]
if (id_set is not None and key not in id_set):
total_visit += 1
continue
new_seqex_list.append(seqex)
return new_seqex_list
def parser_fn(serialized_example):
context_features_config = {
'patientId': tf.VarLenFeature(tf.string),
'label': tf.FixedLenFeature([1], tf.int64),
}
sequence_features_config = {
'dx_ints': tf.VarLenFeature(tf.int64),
'proc_ints': tf.VarLenFeature(tf.int64)
}
(batch_context, batch_sequence) = tf.io.parse_single_sequence_example(
serialized_example,
context_features=context_features_config,
sequence_features=sequence_features_config)
labels = tf.squeeze(tf.cast(batch_context['label'], tf.float32))
return batch_sequence, labels
def tf2csr(output_path, partition, maps):
num_epochs = 1
buffer_size = 32
dataset = tf.data.TFRecordDataset(output_path + partition + ".tfrecord")
dataset = dataset.shuffle(buffer_size)
dataset = dataset.repeat(num_epochs)
dataset = dataset.map(parser_fn, num_parallel_calls=4)
dataset = dataset.batch(1)
dataset = dataset.prefetch(16)
count = 0
np_data = []
np_label = []
for data in dataset:
count += 1
np_datum = np.zeros(sum([len(m) for m in maps]))
dx_pos = tf.sparse.to_dense(data[0]['dx_ints']).numpy().ravel()
proc_pos = tf.sparse.to_dense(data[0]['proc_ints']).numpy().ravel() + \
sum([len(m) for m in maps[:1]])
np_datum[dx_pos] = 1
np_datum[proc_pos] = 1
np_data.append(np_datum)
np_label.append(data[1].numpy()[0])
sys.stdout.write('%d\r' % count)
sys.stdout.flush()
pickle.dump((csr_matrix(np.array(np_data)), np.array(np_label)), \
open(output_path + partition + '_csr.pkl', 'wb'))
"""Set <input_path> to where the raw eICU CSV files are located.
Set <output_path> to where you want the output files to be.
"""
def main():
parser = argparse.ArgumentParser(description='File path')
parser.add_argument('--input_path', type=str, default='.', help='input path of original dataset')
parser.add_argument('--output_path', type=str, default='.', help='output path of processed dataset')
args = parser.parse_args()
input_path = args.input_path
output_path = args.output_path
patient_file = input_path + '/patient.csv'
admission_dx_file = input_path + '/admissionDx.csv'
diagnosis_file = input_path + '/diagnosis.csv'
treatment_file = input_path + '/treatment.csv'
encounter_dict = {}
print('Processing patient.csv')
encounter_dict = process_patient(
patient_file, encounter_dict, hour_threshold=24)
print(len(encounter_dict))
print('Processing admission diagnosis.csv')
encounter_dict = process_admission_dx(admission_dx_file, encounter_dict)
print('Processing diagnosis.csv')
encounter_dict = process_diagnosis(diagnosis_file, encounter_dict)
print('Processing treatment.csv')
encounter_dict = process_treatment(treatment_file, encounter_dict)
key_list, seqex_list, dx_map, proc_map = build_seqex(
encounter_dict, skip_duplicate=False, min_num_codes=1, max_num_codes=50)
pickle.dump(dx_map, open(output_path + '/dx_map.p', 'wb'), -1)
pickle.dump(proc_map, open(output_path + '/proc_map.p', 'wb'), -1)
key_train, key_valid, key_test = select_train_valid_test(key_list)
train_seqex = get_partitions(seqex_list, set(key_train))
validation_seqex = get_partitions(seqex_list, set(key_valid))
test_seqex = get_partitions(seqex_list, set(key_test))
print("Split done.")
with tf.io.TFRecordWriter(output_path + '/train.tfrecord') as writer:
for seqex in train_seqex:
writer.write(seqex.SerializeToString())
with tf.io.TFRecordWriter(output_path + '/validation.tfrecord') as writer:
for seqex in validation_seqex:
writer.write(seqex.SerializeToString())
with tf.io.TFRecordWriter(output_path + '/test.tfrecord') as writer:
for seqex in test_seqex:
writer.write(seqex.SerializeToString())
for partition in ['train', 'validation', 'test']:
tf2csr(output_path, partition, [dx_map, proc_map])
print('done')
if __name__ == '__main__':
main()