|
a |
|
b/foresight/datasets/utils.py |
|
|
1 |
import logging |
|
|
2 |
import numpy as np |
|
|
3 |
from medcat.utils.matutils import unitvec |
|
|
4 |
from datetime import datetime |
|
|
5 |
import math |
|
|
6 |
import datasets |
|
|
7 |
import random |
|
|
8 |
import copy |
|
|
9 |
|
|
|
10 |
def get_all_splits(dataset): |
|
|
11 |
all_datasets = [] |
|
|
12 |
if 'train' in dataset: |
|
|
13 |
all_datasets.append(dataset['train']) |
|
|
14 |
if 'test' in dataset: |
|
|
15 |
all_datasets.append(dataset['test']) |
|
|
16 |
if 'valid' in dataset: |
|
|
17 |
all_datasets.append(dataset['valid']) |
|
|
18 |
if isinstance(dataset, datasets.arrow_dataset.Dataset): |
|
|
19 |
# If we have only one, ie no train/test |
|
|
20 |
all_datasets.append(dataset) |
|
|
21 |
|
|
|
22 |
return all_datasets |
|
|
23 |
|
|
|
24 |
def make_example(token, ent_example, token_type='unk', cnt=10**6, time=None, cntx=None): |
|
|
25 |
out = {'token': token, 'token_type': token_type, 'cnt': cnt, 'time': time} |
|
|
26 |
if 'context_representation' in ent_example: |
|
|
27 |
if cntx is None: |
|
|
28 |
cntx = [0.0 for i in range(len(ent_example['context_representation']))] |
|
|
29 |
|
|
|
30 |
out['context_representation'] = cntx |
|
|
31 |
return out |
|
|
32 |
|
|
|
33 |
def get_duration_separator(separator, start_time, current_time, bucket_size_seconds): |
|
|
34 |
d_separator = separator |
|
|
35 |
for i in [1, 7]: |
|
|
36 |
if (current_time - start_time) >= bucket_size_seconds * i: |
|
|
37 |
d_separator = f'{separator[0:-1]}-{i}{separator[-1]}' |
|
|
38 |
|
|
|
39 |
return d_separator |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
def bucket_concepts(examples, bucket_size_seconds=365*24*60*60, separator='<SEP>', duration_separator=False): |
|
|
43 |
r''' Will bucket concepts into specified bucket_size. |
|
|
44 |
|
|
|
45 |
Args: |
|
|
46 |
examples |
|
|
47 |
''' |
|
|
48 |
for i in range(len(examples['stream'])): |
|
|
49 |
stream = examples['stream'][i] |
|
|
50 |
|
|
|
51 |
new_stream = [] |
|
|
52 |
_bucket = [] |
|
|
53 |
_tokens = set() |
|
|
54 |
start_time = -1 |
|
|
55 |
for ent in stream: |
|
|
56 |
if start_time == -1: |
|
|
57 |
start_time = ent['time'] |
|
|
58 |
|
|
|
59 |
if ent['time'] - start_time >= bucket_size_seconds: |
|
|
60 |
# Add to stream |
|
|
61 |
new_stream.extend(_bucket) |
|
|
62 |
_bucket = [] |
|
|
63 |
_tokens = set() |
|
|
64 |
|
|
|
65 |
if separator is not None: |
|
|
66 |
_separator = separator |
|
|
67 |
if duration_separator: |
|
|
68 |
# This will have different separator for different time spans |
|
|
69 |
_separator = get_duration_separator(separator, start_time, ent['time'], bucket_size_seconds) |
|
|
70 |
|
|
|
71 |
# A separator is +1 of the last token in the stream |
|
|
72 |
new_stream.append(make_example(ent_example=ent, token=_separator, token_type='sep', cnt=10**6, time=new_stream[-1]['time']+1)) |
|
|
73 |
# Change start time to current entity time |
|
|
74 |
start_time = ent['time'] |
|
|
75 |
|
|
|
76 |
if ent['token'] not in _tokens: |
|
|
77 |
_bucket.append(ent) |
|
|
78 |
_tokens.add(ent['token']) |
|
|
79 |
|
|
|
80 |
if _bucket: |
|
|
81 |
new_stream.extend(_bucket) |
|
|
82 |
|
|
|
83 |
examples['stream'][i] = new_stream |
|
|
84 |
new_stream = [] |
|
|
85 |
|
|
|
86 |
return examples |
|
|
87 |
|
|
|
88 |
def add_position_ids(examples, separators=set()): |
|
|
89 |
for i in range(len(examples['stream'])): |
|
|
90 |
stream = examples['stream'][i] |
|
|
91 |
|
|
|
92 |
old_t = None |
|
|
93 |
cnt = 0 |
|
|
94 |
for ent in stream: |
|
|
95 |
ent['position_ids'] = cnt |
|
|
96 |
if ent['token'] in separators: |
|
|
97 |
cnt += 1 |
|
|
98 |
|
|
|
99 |
return examples |
|
|
100 |
|
|
|
101 |
def add_age(examples, pt2dob_timestamp, age_prefix='<AGE>', age_suffix=None, age_normalizer=365.25 * 24 * 60 * 60): |
|
|
102 |
for i in range(len(examples['stream'])): |
|
|
103 |
stream = examples['stream'][i] |
|
|
104 |
last_age_added = -1 |
|
|
105 |
new_stream = [] |
|
|
106 |
for ent in stream: |
|
|
107 |
if examples['patient_id'][i] in pt2dob_timestamp: |
|
|
108 |
if pt2dob_timestamp is not None: |
|
|
109 |
age = int((ent['time'] - pt2dob_timestamp[examples['patient_id'][i]]) / age_normalizer) |
|
|
110 |
|
|
|
111 |
# Age comes a step before the token that caused the change |
|
|
112 |
if age >= 0 and last_age_added != age: |
|
|
113 |
if age_prefix is not None: |
|
|
114 |
new_stream.append(make_example(ent_example=ent, token=age_prefix, token_type='age_prefix', cnt=10**6, time=ent['time'])) |
|
|
115 |
new_stream.append(make_example(ent_example=ent, token=str(age), token_type='age', cnt=10**6, time=ent['time'])) |
|
|
116 |
last_age_added = age |
|
|
117 |
if age_suffix is not None: |
|
|
118 |
new_stream.append(make_example(ent_example=ent, token=age_suffix, token_type='age_suffx', cnt=10**6, time=ent['time'])) |
|
|
119 |
|
|
|
120 |
new_stream.append(ent) |
|
|
121 |
|
|
|
122 |
examples['stream'][i] = new_stream |
|
|
123 |
new_stream = [] |
|
|
124 |
|
|
|
125 |
return examples |
|
|
126 |
|
|
|
127 |
def add_ttd(examples, pt2dod_timestamp, ttd_prefix='<TTD>', ttd_suffix=None, ttd_normalizer=365.25 * 24 * 60 * 60, |
|
|
128 |
max_ttd=10, ttd_prob=1, max_nttd=10, duplicate_streams=False): |
|
|
129 |
all_patient_id = [] |
|
|
130 |
all_stream = [] |
|
|
131 |
for i in range(len(examples['stream'])): |
|
|
132 |
stream = examples['stream'][i] |
|
|
133 |
last_ttd_added = -1 |
|
|
134 |
new_stream = [] |
|
|
135 |
new_streams = [new_stream] |
|
|
136 |
n_added_ttds = 0 |
|
|
137 |
for ent in stream: |
|
|
138 |
if examples['patient_id'][i] in pt2dod_timestamp: |
|
|
139 |
if n_added_ttds < max_nttd: |
|
|
140 |
if random.random() <= ttd_prob: |
|
|
141 |
ttd = int((pt2dod_timestamp[examples['patient_id'][i]] - ent['time']) / ttd_normalizer) + 1 |
|
|
142 |
if ttd <= max_ttd: |
|
|
143 |
if last_ttd_added != ttd: |
|
|
144 |
if duplicate_streams: |
|
|
145 |
# At this point we duplicate the first stream fron new_streams (it is the one without TTD always) |
|
|
146 |
new_stream = copy.deepcopy(new_streams[0]) |
|
|
147 |
new_streams.append(new_stream) |
|
|
148 |
|
|
|
149 |
if ttd_prefix is not None: |
|
|
150 |
new_stream.append(make_example(ent_example=ent, token=ttd_prefix, token_type='ttd_prefix', cnt=10**6, time=ent['time'])) |
|
|
151 |
new_stream.append(make_example(ent_example=ent, token=str(ttd), token_type='ttd', cnt=10**6, time=ent['time'])) |
|
|
152 |
|
|
|
153 |
last_ttd_added = ttd |
|
|
154 |
if ttd_suffix is not None: |
|
|
155 |
new_stream.append(make_example(ent_example=ent, token=ttd_suffix, token_type='ttd_suffix', cnt=10**6, time=ent['time'])) |
|
|
156 |
n_added_ttds += 1 |
|
|
157 |
|
|
|
158 |
# append the entity to each stream |
|
|
159 |
for new_stream in new_streams: new_stream.append(ent) |
|
|
160 |
|
|
|
161 |
if duplicate_streams and len(new_streams) > 1: |
|
|
162 |
# Remove the first example as it is the base one without time info |
|
|
163 |
del new_streams[0] |
|
|
164 |
|
|
|
165 |
for new_stream in new_streams: |
|
|
166 |
all_stream.append(new_stream) |
|
|
167 |
all_patient_id.append(examples['patient_id'][i]) |
|
|
168 |
|
|
|
169 |
examples['patient_id'] = all_patient_id |
|
|
170 |
examples['stream'] = all_stream |
|
|
171 |
|
|
|
172 |
return examples |
|
|
173 |
|
|
|
174 |
def split_stream(examples, max_seq_len=-1): |
|
|
175 |
if max_seq_len > 0: |
|
|
176 |
new_streams = [] |
|
|
177 |
new_patient_ids = [] |
|
|
178 |
for ind, stream in enumerate(examples['stream']): |
|
|
179 |
nparts = math.ceil(len(stream) / max_seq_len) |
|
|
180 |
for i in range(nparts): |
|
|
181 |
new_streams.append(stream[i*max_seq_len:(i+1)*max_seq_len]) |
|
|
182 |
new_patient_ids.append(examples['patient_id'][ind]) |
|
|
183 |
|
|
|
184 |
examples['stream'] = new_streams |
|
|
185 |
examples['patient_id'] = new_patient_ids |
|
|
186 |
|
|
|
187 |
return examples |
|
|
188 |
|
|
|
189 |
|
|
|
190 |
def cleanup_stream(examples, keep_time=True, keep_type=True, keep_position_ids=True, keep_context_representation=True): |
|
|
191 |
r''' Leave only Tokens and remove the rest from `stream` |
|
|
192 |
|
|
|
193 |
Args: |
|
|
194 |
examples |
|
|
195 |
keep_time: |
|
|
196 |
If set another value will be added to examples that contains the `time` for each |
|
|
197 |
entity in stream. |
|
|
198 |
keep_type: |
|
|
199 |
Same as above |
|
|
200 |
''' |
|
|
201 |
if 'token' in examples['stream'][0][0]: |
|
|
202 |
if keep_time: |
|
|
203 |
examples['time'] = [[ent['time'] for ent in stream] for stream in examples['stream']] |
|
|
204 |
if keep_type: |
|
|
205 |
examples['token_type'] = [[ent['token_type'] for ent in stream] for stream in examples['stream']] |
|
|
206 |
if keep_position_ids: |
|
|
207 |
examples['position_ids'] = [[ent['position_ids'] for ent in stream] for stream in examples['stream']] |
|
|
208 |
if keep_context_representation: |
|
|
209 |
examples['context_representation'] = [[ent['context_representation'] for ent in stream] for stream in examples['stream']] |
|
|
210 |
|
|
|
211 |
examples['stream'] = [[ent['token'] for ent in stream] for stream in examples['stream']] |
|
|
212 |
|
|
|
213 |
return examples |
|
|
214 |
|
|
|
215 |
|
|
|
216 |
def add_to_stream(examples, pt2tkn, last=False, prefix=None, unk_tkn='unk', token_type='unk'): |
|
|
217 |
r''' Add information to the patient stream based on patient_id. |
|
|
218 |
|
|
|
219 |
Args: |
|
|
220 |
examples |
|
|
221 |
pt2tkn |
|
|
222 |
last |
|
|
223 |
unk_tkn: |
|
|
224 |
What token will be added if the patient_id is not in pt2tkn |
|
|
225 |
''' |
|
|
226 |
|
|
|
227 |
for i in range(len(examples['stream'])): |
|
|
228 |
ent = examples['stream'][i][0] |
|
|
229 |
|
|
|
230 |
if examples['patient_id'][i] in pt2tkn: |
|
|
231 |
token = pt2tkn.get(examples['patient_id'][i], unk_tkn) |
|
|
232 |
t_ind = -1 if last else 0 # If -1 means it is the last token, otherwise the first |
|
|
233 |
to_append = [make_example(ent_example=ent, token=token, cnt=10**6, time=examples['stream'][i][t_ind]['time'], token_type=token_type)] |
|
|
234 |
if prefix is not None: |
|
|
235 |
prefix_token = make_example(ent_example=ent, token=prefix, cnt=10**6, |
|
|
236 |
time=examples['stream'][i][t_ind]['time'], token_type="prefix_" + token_type) |
|
|
237 |
to_append = [prefix_token] + to_append |
|
|
238 |
|
|
|
239 |
if last: |
|
|
240 |
# Append as last token |
|
|
241 |
examples['stream'][i] = examples['stream'][i] + to_append |
|
|
242 |
else: |
|
|
243 |
examples['stream'][i] = to_append + examples['stream'][i] |
|
|
244 |
|
|
|
245 |
return examples |
|
|
246 |
|
|
|
247 |
|
|
|
248 |
def remove_tokens_not_in_tokenizer(examples, tokens_to_keep): |
|
|
249 |
tokens_to_keep = set(tokens_to_keep) |
|
|
250 |
for i in range(len(examples['stream'])): |
|
|
251 |
stream = examples['stream'][i] |
|
|
252 |
new_stream = [] |
|
|
253 |
|
|
|
254 |
for ent in stream: |
|
|
255 |
tkn = ent['token'] |
|
|
256 |
|
|
|
257 |
if tkn in tokens_to_keep: |
|
|
258 |
new_stream.append(ent) |
|
|
259 |
|
|
|
260 |
examples['stream'][i] = new_stream |
|
|
261 |
|
|
|
262 |
return examples |
|
|
263 |
|
|
|
264 |
|
|
|
265 |
def remove_parents_from_stream(examples, ch2parents, separator=None, separators=None): |
|
|
266 |
for i in range(len(examples['stream'])): |
|
|
267 |
stream = examples['stream'][i] |
|
|
268 |
parents = set() |
|
|
269 |
new_stream = [] |
|
|
270 |
|
|
|
271 |
for ent in stream: |
|
|
272 |
tkn = ent['token'] |
|
|
273 |
|
|
|
274 |
if (separator is not None and tkn == separator) or (separators is not None and tkn in separators): |
|
|
275 |
# This means we are removing parents only inside of one bucket |
|
|
276 |
parents = set() |
|
|
277 |
|
|
|
278 |
if tkn in ch2parents: |
|
|
279 |
# Add only if not in parents |
|
|
280 |
if tkn not in parents: |
|
|
281 |
new_stream.append(ent) |
|
|
282 |
# Update parents |
|
|
283 |
parents.update(ch2parents[tkn]) |
|
|
284 |
else: |
|
|
285 |
new_stream.append(ent) |
|
|
286 |
|
|
|
287 |
examples['stream'][i] = new_stream |
|
|
288 |
|
|
|
289 |
return examples |
|
|
290 |
|
|
|
291 |
def get_embeddings_for_tokens(dataset=None, cdb=None, context_type='medium', normalize=True, extra_tokens=['<PAD>'], types=None, concepts=None): |
|
|
292 |
r''' Given a stream of tokens get the embeddings from MedCAT and make the required maps. |
|
|
293 |
|
|
|
294 |
Args: |
|
|
295 |
dataset |
|
|
296 |
cdb |
|
|
297 |
context_type |
|
|
298 |
normalize: |
|
|
299 |
If True the embedding vectors will be normalized |
|
|
300 |
tkn2type: |
|
|
301 |
Dictionary mapping from token to type |
|
|
302 |
types: |
|
|
303 |
All posible token types (e.g. [T-11, T-12, ...] |
|
|
304 |
concepts: |
|
|
305 |
If provided these concepts will also be appened to the tokens and supported by the tokenizer |
|
|
306 |
Returns: |
|
|
307 |
embeddings |
|
|
308 |
tkn2id |
|
|
309 |
id2tkn |
|
|
310 |
id2type |
|
|
311 |
id2type_detailed |
|
|
312 |
''' |
|
|
313 |
embeddings = [] |
|
|
314 |
tkn2id = {} |
|
|
315 |
id2tkn = {} |
|
|
316 |
|
|
|
317 |
def add_tkn(tkn): |
|
|
318 |
if tkn in cdb.cui2context_vectors and context_type in cdb.cui2context_vectors[tkn]: |
|
|
319 |
vec = cdb.cui2context_vectors[tkn][context_type] |
|
|
320 |
else: |
|
|
321 |
# Token vector is randomly assigned |
|
|
322 |
vec = np.random.rand(300) |
|
|
323 |
|
|
|
324 |
id2tkn[len(embeddings)] = tkn |
|
|
325 |
tkn2id[tkn] = len(embeddings) |
|
|
326 |
|
|
|
327 |
vec = unitvec(vec) if normalize else vec |
|
|
328 |
embeddings.append(vec) |
|
|
329 |
|
|
|
330 |
datasets = get_all_splits(dataset) |
|
|
331 |
for _dataset in datasets: |
|
|
332 |
for stream in _dataset['stream']: |
|
|
333 |
for tkn in stream: |
|
|
334 |
tkn = str(tkn) |
|
|
335 |
if tkn not in tkn2id: |
|
|
336 |
add_tkn(tkn) |
|
|
337 |
# Add concepts if they are provided, this is used to build a general |
|
|
338 |
#tokenizer with all concepts |
|
|
339 |
if concepts is not None: |
|
|
340 |
for concept in concepts: |
|
|
341 |
tkn = str(concept) |
|
|
342 |
if tkn not in tkn2id: |
|
|
343 |
add_tkn(tkn) |
|
|
344 |
|
|
|
345 |
# Add named tokens |
|
|
346 |
for tkn in extra_tokens: |
|
|
347 |
if tkn not in tkn2id: |
|
|
348 |
id2tkn[len(embeddings)] = tkn |
|
|
349 |
tkn2id[tkn] = len(embeddings) |
|
|
350 |
if tkn != '<PAD>': |
|
|
351 |
embeddings.append(np.random.rand(len(embeddings[0]))) |
|
|
352 |
else: |
|
|
353 |
embeddings.append(np.zeros(len(embeddings[0]))) |
|
|
354 |
|
|
|
355 |
# Add type tokens |
|
|
356 |
for tkn in types: |
|
|
357 |
if tkn not in tkn2id: |
|
|
358 |
id2tkn[len(embeddings)] = tkn |
|
|
359 |
tkn2id[tkn] = len(embeddings) |
|
|
360 |
embeddings.append(np.random.rand(len(embeddings[0]))) |
|
|
361 |
|
|
|
362 |
return embeddings, tkn2id, id2tkn |
|
|
363 |
|
|
|
364 |
|
|
|
365 |
def stream_to_separate_examples(examples): |
|
|
366 |
r''' Convert a stream to separate examples that can be used to train |
|
|
367 |
a next concept predictor unable to handle sequences (e.g. random forset). Use with HF datasets map function. |
|
|
368 |
|
|
|
369 |
''' |
|
|
370 |
out = {} |
|
|
371 |
out['input_ids'] = [input_ids[0:i+1] for input_ids in examples['input_ids'] for i in range(len(input_ids) - 1)] |
|
|
372 |
out['labels'] = [input_ids[i+1] for input_ids in examples['input_ids'] for i in range(len(input_ids) - 1)] |
|
|
373 |
out['labels_all'] = [input_ids[i+1:] for input_ids in examples['input_ids'] for i in range(len(input_ids) - 1)] |
|
|
374 |
out['patient_id'] = [patient_id for ind, patient_id in enumerate(examples['patient_id']) for _ in range(len(examples['input_ids'][ind]) - 1)] |
|
|
375 |
|
|
|
376 |
return out |