|
a |
|
b/experiments/Foresight MIMIC Final -- Prepare data.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"id": "01ae6e4a", |
|
|
7 |
"metadata": {}, |
|
|
8 |
"outputs": [], |
|
|
9 |
"source": [ |
|
|
10 |
"import torch\n", |
|
|
11 |
"import os\n", |
|
|
12 |
"import datasets\n", |
|
|
13 |
"import numpy as np\n", |
|
|
14 |
"from collections import defaultdict\n", |
|
|
15 |
"from medcat.cat import CAT\n", |
|
|
16 |
"from foresight.datasets import patient_concept_stream\n", |
|
|
17 |
"from foresight.datasets.filters import filter_by_count, filter_by_type\n", |
|
|
18 |
"from foresight.datasets.utils import get_embeddings_for_tokens, stream_to_separate_examples, add_to_stream, \\\n", |
|
|
19 |
" remove_parents_from_stream, bucket_concepts, cleanup_stream, \\\n", |
|
|
20 |
" split_stream, add_age, get_all_splits, add_ttd, add_position_ids\n", |
|
|
21 |
"from foresight.utils import pickle\n", |
|
|
22 |
"from foresight.utils.cdb_utils import get_parents_map \n", |
|
|
23 |
"from foresight.utils.stream_utils import docs2stream, calculate_counts\n", |
|
|
24 |
"from foresight.tokenizers.simple_map_tokenizer import SimpleMapTokenizer\n", |
|
|
25 |
"from foresight.metrics.next_concept_prediction import precision, metrics_data2df, ComputePrecisionHF\n", |
|
|
26 |
"from medcat.cdb import CDB\n", |
|
|
27 |
"from foresight.utils import pickle\n", |
|
|
28 |
"import plotly.express as px" |
|
|
29 |
] |
|
|
30 |
}, |
|
|
31 |
{ |
|
|
32 |
"cell_type": "code", |
|
|
33 |
"execution_count": null, |
|
|
34 |
"id": "9f57b67c", |
|
|
35 |
"metadata": {}, |
|
|
36 |
"outputs": [], |
|
|
37 |
"source": [ |
|
|
38 |
"DAYS = 1 # Do: 1, 14, 30\n", |
|
|
39 |
"MAX_SEQ_LEN = 256\n", |
|
|
40 |
"#TYPES = ['T-45', 'T-55', 'T-26', 'T-29', 'T-40', 'T-9', 'T-27', 'T-11', 'T-39', 'T-18']\n", |
|
|
41 |
"TYPES = ['ALL_TYPES']\n", |
|
|
42 |
"#TYPES = ['T-11']\n", |
|
|
43 |
"#TYPES = ['T-11', 'T-18']" |
|
|
44 |
] |
|
|
45 |
}, |
|
|
46 |
{ |
|
|
47 |
"cell_type": "code", |
|
|
48 |
"execution_count": null, |
|
|
49 |
"id": "5ac3ee70", |
|
|
50 |
"metadata": {}, |
|
|
51 |
"outputs": [], |
|
|
52 |
"source": [ |
|
|
53 |
"BASE_NAME = 'annotated_february_2022'\n", |
|
|
54 |
"DATASET_NAME = 'annotations_stream_phase2_v1'\n", |
|
|
55 |
"RUN_NAME = f'{DATASET_NAME}_{DAYS}d_{MAX_SEQ_LEN}_{\"_\".join(TYPES)}'" |
|
|
56 |
] |
|
|
57 |
}, |
|
|
58 |
{ |
|
|
59 |
"cell_type": "code", |
|
|
60 |
"execution_count": null, |
|
|
61 |
"id": "c865ce1e", |
|
|
62 |
"metadata": {}, |
|
|
63 |
"outputs": [], |
|
|
64 |
"source": [ |
|
|
65 |
"ds_info = open(\"dataset-info/\" + RUN_NAME + '.txt', 'w')\n", |
|
|
66 |
"def fprint(*texts):\n", |
|
|
67 |
" for text in texts:\n", |
|
|
68 |
" print(text)\n", |
|
|
69 |
" ds_info.write(str(text) + \"\\n\")" |
|
|
70 |
] |
|
|
71 |
}, |
|
|
72 |
{ |
|
|
73 |
"cell_type": "code", |
|
|
74 |
"execution_count": null, |
|
|
75 |
"id": "922abc5f", |
|
|
76 |
"metadata": {}, |
|
|
77 |
"outputs": [], |
|
|
78 |
"source": [ |
|
|
79 |
"FROM_BASE = False\n", |
|
|
80 |
"BASE_TOKENIZER_PATH = ''" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "code", |
|
|
85 |
"execution_count": null, |
|
|
86 |
"id": "c32b0b92", |
|
|
87 |
"metadata": {}, |
|
|
88 |
"outputs": [], |
|
|
89 |
"source": [ |
|
|
90 |
"TYPES = set(TYPES)" |
|
|
91 |
] |
|
|
92 |
}, |
|
|
93 |
{ |
|
|
94 |
"cell_type": "code", |
|
|
95 |
"execution_count": null, |
|
|
96 |
"id": "6efddbcc", |
|
|
97 |
"metadata": {}, |
|
|
98 |
"outputs": [], |
|
|
99 |
"source": [ |
|
|
100 |
"DATA_PATH = f\"./data/timecat/mimic/{BASE_NAME}/{DATASET_NAME}.pickle\"\n", |
|
|
101 |
"DATA_PATH_SPLITS = f\"./data/timecat/mimic/{BASE_NAME}/{DATASET_NAME}_split/\"\n", |
|
|
102 |
"TOKENIZER_PATH = f\"./data/timecat/models/gpt/tokenizer_{RUN_NAME}.pickle\"\n", |
|
|
103 |
"ALMOST_PREPARED_DATASET_SPLIT_PATH = f\"./data/timecat/mimic/{BASE_NAME}/{RUN_NAME}_almost_prepared_split/\"\n", |
|
|
104 |
"PREPARED_DATASET_SPLIT_PATH = f\"./data/timecat/mimic/{BASE_NAME}/{RUN_NAME}_prepared_split/\"\n", |
|
|
105 |
"JUST_BEFORE_ENCODING_DATASET_SPLIT_PATH = f\"./data/timecat/mimic/{BASE_NAME}/{RUN_NAME}_just_before_encoding/\"\n", |
|
|
106 |
"CAT_PATH = \"./data/models/modelpacks/mc_modelpack_phase2_snomed_190k_february_2022.zip\"\n", |
|
|
107 |
"PT_DOB_PATH = \"./data/mimic/pt2dob_datetime.pickle\"\n", |
|
|
108 |
"PT_DOD_PATH = \"./data/mimic/pt2dod_timestamp.pickle\"\n", |
|
|
109 |
"PT_SEX_PATH = \"./data/mimic/pt2sex.pickle\"\n", |
|
|
110 |
"PT_LNS_PATH = f\"./data/timecat/mimic/{BASE_NAME}/lns_{DATASET_NAME}.pickle\"\n", |
|
|
111 |
"PT_CNTS_PATH = f\"./data/timecat/mimic/{BASE_NAME}/cnts_{DATASET_NAME}.pickle\"\n", |
|
|
112 |
"PT_ETHNICITY_PATH = \"./data/mimic/pt2ethnicity.pickle\"\n", |
|
|
113 |
"TOKEN_TYPES_PATH = f'./data/timecat/mimic/{BASE_NAME}/types_{DATASET_NAME}.pickle'\n", |
|
|
114 |
"\n", |
|
|
115 |
"BATCH_SIZE = 200\n", |
|
|
116 |
"DEVICE = torch.device('cuda')\n", |
|
|
117 |
"NUM_PROC = 16\n", |
|
|
118 |
"MIN_COUNT = 2 # 3\n", |
|
|
119 |
"MIN_GLOBAL_COUNT = 100 # 1000" |
|
|
120 |
] |
|
|
121 |
}, |
|
|
122 |
{ |
|
|
123 |
"cell_type": "code", |
|
|
124 |
"execution_count": null, |
|
|
125 |
"id": "a8eddb07", |
|
|
126 |
"metadata": { |
|
|
127 |
"scrolled": true |
|
|
128 |
}, |
|
|
129 |
"outputs": [], |
|
|
130 |
"source": [ |
|
|
131 |
"cat = CAT.load_model_pack(CAT_PATH, meta_cat_config_dict={'general': {'device': 'cpu'}})\n", |
|
|
132 |
"cdb = cat.cdb" |
|
|
133 |
] |
|
|
134 |
}, |
|
|
135 |
{ |
|
|
136 |
"cell_type": "markdown", |
|
|
137 |
"id": "c5b51800", |
|
|
138 |
"metadata": {}, |
|
|
139 |
"source": [ |
|
|
140 |
"# Convert docs.pickle into patient stream used by HF datasets" |
|
|
141 |
] |
|
|
142 |
}, |
|
|
143 |
{ |
|
|
144 |
"cell_type": "code", |
|
|
145 |
"execution_count": null, |
|
|
146 |
"id": "9445cd0d", |
|
|
147 |
"metadata": {}, |
|
|
148 |
"outputs": [], |
|
|
149 |
"source": [ |
|
|
150 |
"doc2pt = pickle.load(\"./data/timecat/mimic/doc2pt.pickle\")" |
|
|
151 |
] |
|
|
152 |
}, |
|
|
153 |
{ |
|
|
154 |
"cell_type": "code", |
|
|
155 |
"execution_count": null, |
|
|
156 |
"id": "41568f81", |
|
|
157 |
"metadata": {}, |
|
|
158 |
"outputs": [], |
|
|
159 |
"source": [ |
|
|
160 |
"doc2pt = {str(k):v for k,v in doc2pt.items()}" |
|
|
161 |
] |
|
|
162 |
}, |
|
|
163 |
{ |
|
|
164 |
"cell_type": "markdown", |
|
|
165 |
"id": "e5bdc483", |
|
|
166 |
"metadata": {}, |
|
|
167 |
"source": [ |
|
|
168 |
"### Get counts" |
|
|
169 |
] |
|
|
170 |
}, |
|
|
171 |
{ |
|
|
172 |
"cell_type": "code", |
|
|
173 |
"execution_count": null, |
|
|
174 |
"id": "ad82350f", |
|
|
175 |
"metadata": {}, |
|
|
176 |
"outputs": [], |
|
|
177 |
"source": [ |
|
|
178 |
"pt2cui2cnt = None\n", |
|
|
179 |
"base_path = './data/timecat/mimic/annotated_february_2022/'\n", |
|
|
180 |
"doc_paths = os.listdir(base_path)\n", |
|
|
181 |
"doc_paths = [path for path in doc_paths if path.startswith(\"part_\")] # So we keep only annotations data\n", |
|
|
182 |
"\n", |
|
|
183 |
"for path in doc_paths:\n", |
|
|
184 |
" docs = pickle.load(os.path.join(base_path, path))\n", |
|
|
185 |
" \n", |
|
|
186 |
" pt2cui2cnt = calculate_counts(docs=docs,\n", |
|
|
187 |
" doc2pt=doc2pt,\n", |
|
|
188 |
" pt2cui2cnt=pt2cui2cnt,\n", |
|
|
189 |
" meta_requirements={'Presence': 'True', 'Subject': 'Patient'})" |
|
|
190 |
] |
|
|
191 |
}, |
|
|
192 |
{ |
|
|
193 |
"cell_type": "code", |
|
|
194 |
"execution_count": null, |
|
|
195 |
"id": "063bf5b0", |
|
|
196 |
"metadata": {}, |
|
|
197 |
"outputs": [], |
|
|
198 |
"source": [ |
|
|
199 |
"pickle.dump(dict(pt2cui2cnt), f\"./data/timecat/mimic/{BASE_NAME}/pt2cui2cnt.pickle\")" |
|
|
200 |
] |
|
|
201 |
}, |
|
|
202 |
{ |
|
|
203 |
"cell_type": "code", |
|
|
204 |
"execution_count": null, |
|
|
205 |
"id": "d0355f5e", |
|
|
206 |
"metadata": {}, |
|
|
207 |
"outputs": [], |
|
|
208 |
"source": [ |
|
|
209 |
"pt2cui2cnt = pickle.load(f\"./data/timecat/mimic/{BASE_NAME}/pt2cui2cnt.pickle\")" |
|
|
210 |
] |
|
|
211 |
}, |
|
|
212 |
{ |
|
|
213 |
"cell_type": "code", |
|
|
214 |
"execution_count": null, |
|
|
215 |
"id": "355925a7", |
|
|
216 |
"metadata": {}, |
|
|
217 |
"outputs": [], |
|
|
218 |
"source": [ |
|
|
219 |
"# Total number of annotations per type\n", |
|
|
220 |
"cnt_per_type = {}\n", |
|
|
221 |
"other_cnt = 0\n", |
|
|
222 |
"for pt in pt2cui2cnt:\n", |
|
|
223 |
" for cui in pt2cui2cnt[pt]:\n", |
|
|
224 |
" if cat.cdb.cui2type_ids[cui]:\n", |
|
|
225 |
" t = list(cat.cdb.cui2type_ids[cui])[0]\n", |
|
|
226 |
" cnt_per_type[t] = cnt_per_type.get(t, 0) + pt2cui2cnt[pt][cui]\n", |
|
|
227 |
" else:\n", |
|
|
228 |
" other_cnt += 1" |
|
|
229 |
] |
|
|
230 |
}, |
|
|
231 |
{ |
|
|
232 |
"cell_type": "code", |
|
|
233 |
"execution_count": null, |
|
|
234 |
"id": "79c7b309", |
|
|
235 |
"metadata": {}, |
|
|
236 |
"outputs": [], |
|
|
237 |
"source": [ |
|
|
238 |
"fprint(\"Total number of annotations per type: \")\n", |
|
|
239 |
"for t in cnt_per_type:\n", |
|
|
240 |
" fprint(\"{:30}: {}\".format(cat.cdb.addl_info['type_id2name'][t].title(), cnt_per_type[t]))\n", |
|
|
241 |
"fprint(\"\")" |
|
|
242 |
] |
|
|
243 |
}, |
|
|
244 |
{ |
|
|
245 |
"cell_type": "code", |
|
|
246 |
"execution_count": null, |
|
|
247 |
"id": "c513bf0c", |
|
|
248 |
"metadata": {}, |
|
|
249 |
"outputs": [], |
|
|
250 |
"source": [ |
|
|
251 |
"fprint(\"Total number of annotations: \", sum([x for x in cnt_per_type.values()]))\n", |
|
|
252 |
"fprint(\"\")" |
|
|
253 |
] |
|
|
254 |
}, |
|
|
255 |
{ |
|
|
256 |
"cell_type": "code", |
|
|
257 |
"execution_count": null, |
|
|
258 |
"id": "6a0375ab", |
|
|
259 |
"metadata": {}, |
|
|
260 |
"outputs": [], |
|
|
261 |
"source": [ |
|
|
262 |
"# Get total number of different concepts\n", |
|
|
263 |
"all_cuis = set()\n", |
|
|
264 |
"for pt in pt2cui2cnt.keys():\n", |
|
|
265 |
" for cui in pt2cui2cnt[pt]: \n", |
|
|
266 |
" all_cuis.add(cui)\n", |
|
|
267 |
"fprint(\"Total number of different concepts: \", len(all_cuis))\n", |
|
|
268 |
"fprint(\"\")" |
|
|
269 |
] |
|
|
270 |
}, |
|
|
271 |
{ |
|
|
272 |
"cell_type": "code", |
|
|
273 |
"execution_count": null, |
|
|
274 |
"id": "5e5e6c4f", |
|
|
275 |
"metadata": {}, |
|
|
276 |
"outputs": [], |
|
|
277 |
"source": [ |
|
|
278 |
"# Total number of patients\n", |
|
|
279 |
"fprint(\"Total number of patients: \", len(pt2cui2cnt))\n", |
|
|
280 |
"fprint(\"\")" |
|
|
281 |
] |
|
|
282 |
}, |
|
|
283 |
{ |
|
|
284 |
"cell_type": "markdown", |
|
|
285 |
"id": "8e3471c9", |
|
|
286 |
"metadata": {}, |
|
|
287 |
"source": [ |
|
|
288 |
"### Get pt2stream" |
|
|
289 |
] |
|
|
290 |
}, |
|
|
291 |
{ |
|
|
292 |
"cell_type": "code", |
|
|
293 |
"execution_count": null, |
|
|
294 |
"id": "deb8bf33", |
|
|
295 |
"metadata": {}, |
|
|
296 |
"outputs": [], |
|
|
297 |
"source": [ |
|
|
298 |
"base_path = f'./data/timecat/mimic/{BASE_NAME}/'\n", |
|
|
299 |
"doc_paths = os.listdir(base_path)\n", |
|
|
300 |
"doc_paths = [path for path in doc_paths if path.startswith(\"part_\")] # So we keep only annotations data\n", |
|
|
301 |
"pt2stream = None\n", |
|
|
302 |
"doc2time = {str(k):v for k,v in pickle.load(\"./data/timecat/mimic/doc2time.pickle\").items()}\n", |
|
|
303 |
"\n", |
|
|
304 |
"for path in doc_paths:\n", |
|
|
305 |
" docs = pickle.load(os.path.join(base_path, path))\n", |
|
|
306 |
" pt2stream = docs2stream(docs,\n", |
|
|
307 |
" doc2pt=doc2pt,\n", |
|
|
308 |
" pt2cui2cnt=pt2cui2cnt,\n", |
|
|
309 |
" doc2time=doc2time,\n", |
|
|
310 |
" entity_type_column='type_ids',\n", |
|
|
311 |
" meta_requirements={'Subject': 'Patient', 'Presence': 'True'},\n", |
|
|
312 |
" historical_meta='Time',\n", |
|
|
313 |
" historical_meta_value='Past',\n", |
|
|
314 |
" old_pt2stream=pt2stream,\n", |
|
|
315 |
" skip_cuis={'S-418023006', '17971005'},\n", |
|
|
316 |
" require_time=True)" |
|
|
317 |
] |
|
|
318 |
}, |
|
|
319 |
{ |
|
|
320 |
"cell_type": "code", |
|
|
321 |
"execution_count": null, |
|
|
322 |
"id": "c89f0594", |
|
|
323 |
"metadata": {}, |
|
|
324 |
"outputs": [], |
|
|
325 |
"source": [ |
|
|
326 |
"pickle.dump(dict(pt2stream), DATA_PATH)" |
|
|
327 |
] |
|
|
328 |
}, |
|
|
329 |
{ |
|
|
330 |
"cell_type": "markdown", |
|
|
331 |
"id": "6cfb0fa2", |
|
|
332 |
"metadata": {}, |
|
|
333 |
"source": [ |
|
|
334 |
"# Load dataset" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": null, |
|
|
340 |
"id": "ba72e618", |
|
|
341 |
"metadata": { |
|
|
342 |
"scrolled": true |
|
|
343 |
}, |
|
|
344 |
"outputs": [], |
|
|
345 |
"source": [ |
|
|
346 |
"dataset = datasets.load_dataset(os.path.abspath(patient_concept_stream.__file__), \n", |
|
|
347 |
" data_files={'train': DATA_PATH})['train']" |
|
|
348 |
] |
|
|
349 |
}, |
|
|
350 |
{ |
|
|
351 |
"cell_type": "markdown", |
|
|
352 |
"id": "305eed65", |
|
|
353 |
"metadata": {}, |
|
|
354 |
"source": [ |
|
|
355 |
"# Calculate counts" |
|
|
356 |
] |
|
|
357 |
}, |
|
|
358 |
{ |
|
|
359 |
"cell_type": "code", |
|
|
360 |
"execution_count": null, |
|
|
361 |
"id": "28bb5e02", |
|
|
362 |
"metadata": {}, |
|
|
363 |
"outputs": [], |
|
|
364 |
"source": [ |
|
|
365 |
"# Calculate counts for tokens\n", |
|
|
366 |
"token_cnt = defaultdict(int)\n", |
|
|
367 |
"for _dataset in get_all_splits(dataset):\n", |
|
|
368 |
" for stream in _dataset['stream']:\n", |
|
|
369 |
" unique_tokens = set([sample['token'] for sample in stream])\n", |
|
|
370 |
" for token in unique_tokens:\n", |
|
|
371 |
" token_cnt[token] += 1\n", |
|
|
372 |
"token_cnt = dict(token_cnt)" |
|
|
373 |
] |
|
|
374 |
}, |
|
|
375 |
{ |
|
|
376 |
"cell_type": "code", |
|
|
377 |
"execution_count": null, |
|
|
378 |
"id": "d5fbd7c7", |
|
|
379 |
"metadata": {}, |
|
|
380 |
"outputs": [], |
|
|
381 |
"source": [ |
|
|
382 |
"pickle.dump(token_cnt, PT_CNTS_PATH)" |
|
|
383 |
] |
|
|
384 |
}, |
|
|
385 |
{ |
|
|
386 |
"cell_type": "code", |
|
|
387 |
"execution_count": null, |
|
|
388 |
"id": "9c928e97", |
|
|
389 |
"metadata": {}, |
|
|
390 |
"outputs": [], |
|
|
391 |
"source": [ |
|
|
392 |
"MIN_GLOBAL_COUNT = 100 # 1000" |
|
|
393 |
] |
|
|
394 |
}, |
|
|
395 |
{ |
|
|
396 |
"cell_type": "markdown", |
|
|
397 |
"id": "3b6766cf", |
|
|
398 |
"metadata": {}, |
|
|
399 |
"source": [ |
|
|
400 |
"# Load and filter by count" |
|
|
401 |
] |
|
|
402 |
}, |
|
|
403 |
{ |
|
|
404 |
"cell_type": "code", |
|
|
405 |
"execution_count": null, |
|
|
406 |
"id": "04085e31", |
|
|
407 |
"metadata": {}, |
|
|
408 |
"outputs": [], |
|
|
409 |
"source": [ |
|
|
410 |
"token_cnt = pickle.load(PT_CNTS_PATH)" |
|
|
411 |
] |
|
|
412 |
}, |
|
|
413 |
{ |
|
|
414 |
"cell_type": "code", |
|
|
415 |
"execution_count": null, |
|
|
416 |
"id": "049dfd9f", |
|
|
417 |
"metadata": {}, |
|
|
418 |
"outputs": [], |
|
|
419 |
"source": [ |
|
|
420 |
"dataset = filter_by_count(dataset, min_count=MIN_COUNT, min_count_global=MIN_GLOBAL_COUNT, min_length=5, max_length=-1, \n", |
|
|
421 |
" num_proc=NUM_PROC, token_cnt=token_cnt)" |
|
|
422 |
] |
|
|
423 |
}, |
|
|
424 |
{ |
|
|
425 |
"cell_type": "markdown", |
|
|
426 |
"id": "0ca8e8e8", |
|
|
427 |
"metadata": {}, |
|
|
428 |
"source": [ |
|
|
429 |
"### Split and save" |
|
|
430 |
] |
|
|
431 |
}, |
|
|
432 |
{ |
|
|
433 |
"cell_type": "code", |
|
|
434 |
"execution_count": null, |
|
|
435 |
"id": "b5feea2f", |
|
|
436 |
"metadata": {}, |
|
|
437 |
"outputs": [], |
|
|
438 |
"source": [ |
|
|
439 |
"# Total number of annotations per type\n", |
|
|
440 |
"cnt_per_type = {}\n", |
|
|
441 |
"for cui in token_cnt:\n", |
|
|
442 |
" if cat.cdb.cui2type_ids[cui]:\n", |
|
|
443 |
" t = list(cat.cdb.cui2type_ids[cui])[0]\n", |
|
|
444 |
" cnt_per_type[t] = cnt_per_type.get(t, 0) + token_cnt[cui]" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
{ |
|
|
448 |
"cell_type": "code", |
|
|
449 |
"execution_count": null, |
|
|
450 |
"id": "5f743cfe", |
|
|
451 |
"metadata": {}, |
|
|
452 |
"outputs": [], |
|
|
453 |
"source": [ |
|
|
454 |
"dataset = dataset.train_test_split(test_size = 0.05)" |
|
|
455 |
] |
|
|
456 |
}, |
|
|
457 |
{ |
|
|
458 |
"cell_type": "code", |
|
|
459 |
"execution_count": null, |
|
|
460 |
"id": "49dffff3", |
|
|
461 |
"metadata": {}, |
|
|
462 |
"outputs": [], |
|
|
463 |
"source": [ |
|
|
464 |
"dataset.save_to_disk(DATA_PATH_SPLITS)" |
|
|
465 |
] |
|
|
466 |
}, |
|
|
467 |
{ |
|
|
468 |
"cell_type": "markdown", |
|
|
469 |
"id": "2580b573", |
|
|
470 |
"metadata": {}, |
|
|
471 |
"source": [ |
|
|
472 |
"# CONTINUE FROM HERE WHEN NOT THE FIRST RUN" |
|
|
473 |
] |
|
|
474 |
}, |
|
|
475 |
{ |
|
|
476 |
"cell_type": "markdown", |
|
|
477 |
"id": "3c535b25", |
|
|
478 |
"metadata": {}, |
|
|
479 |
"source": [ |
|
|
480 |
"### Load splits" |
|
|
481 |
] |
|
|
482 |
}, |
|
|
483 |
{ |
|
|
484 |
"cell_type": "code", |
|
|
485 |
"execution_count": null, |
|
|
486 |
"id": "acf777de", |
|
|
487 |
"metadata": {}, |
|
|
488 |
"outputs": [], |
|
|
489 |
"source": [ |
|
|
490 |
"token_cnt = pickle.load(PT_CNTS_PATH)" |
|
|
491 |
] |
|
|
492 |
}, |
|
|
493 |
{ |
|
|
494 |
"cell_type": "code", |
|
|
495 |
"execution_count": null, |
|
|
496 |
"id": "ab30780b", |
|
|
497 |
"metadata": {}, |
|
|
498 |
"outputs": [], |
|
|
499 |
"source": [ |
|
|
500 |
"dataset = datasets.load_from_disk(DATA_PATH_SPLITS)" |
|
|
501 |
] |
|
|
502 |
}, |
|
|
503 |
{ |
|
|
504 |
"cell_type": "code", |
|
|
505 |
"execution_count": null, |
|
|
506 |
"id": "3929e28a", |
|
|
507 |
"metadata": {}, |
|
|
508 |
"outputs": [], |
|
|
509 |
"source": [ |
|
|
510 |
"dataset" |
|
|
511 |
] |
|
|
512 |
}, |
|
|
513 |
{ |
|
|
514 |
"cell_type": "code", |
|
|
515 |
"execution_count": null, |
|
|
516 |
"id": "6fe3b048", |
|
|
517 |
"metadata": {}, |
|
|
518 |
"outputs": [], |
|
|
519 |
"source": [ |
|
|
520 |
"fprint(\"Total number of pts in train/test: {}/{}\".format(len(dataset['train']), len(dataset['test'])))" |
|
|
521 |
] |
|
|
522 |
}, |
|
|
523 |
{ |
|
|
524 |
"cell_type": "markdown", |
|
|
525 |
"id": "2d7964a1", |
|
|
526 |
"metadata": {}, |
|
|
527 |
"source": [ |
|
|
528 |
"# Filter to required type" |
|
|
529 |
] |
|
|
530 |
}, |
|
|
531 |
{ |
|
|
532 |
"cell_type": "code", |
|
|
533 |
"execution_count": null, |
|
|
534 |
"id": "1067d23e", |
|
|
535 |
"metadata": {}, |
|
|
536 |
"outputs": [], |
|
|
537 |
"source": [ |
|
|
538 |
"if \"ALL_TYPES\" not in TYPES:\n", |
|
|
539 |
" print(\"FILTERING\")\n", |
|
|
540 |
" dataset = filter_by_type(dataset, types_to_keep=TYPES, num_proc=NUM_PROC)" |
|
|
541 |
] |
|
|
542 |
}, |
|
|
543 |
{ |
|
|
544 |
"cell_type": "markdown", |
|
|
545 |
"id": "58033ab4", |
|
|
546 |
"metadata": {}, |
|
|
547 |
"source": [ |
|
|
548 |
"# Add Death token" |
|
|
549 |
] |
|
|
550 |
}, |
|
|
551 |
{ |
|
|
552 |
"cell_type": "code", |
|
|
553 |
"execution_count": null, |
|
|
554 |
"id": "9db46905", |
|
|
555 |
"metadata": {}, |
|
|
556 |
"outputs": [], |
|
|
557 |
"source": [ |
|
|
558 |
"pt2dod_timestamp = {str(k):v for k,v in pickle.load(PT_DOD_PATH).items()}\n", |
|
|
559 |
"pt2death = {k:\"The patient has died\" for k in pt2dod_timestamp.keys()}\n", |
|
|
560 |
"dataset = dataset.map(\n", |
|
|
561 |
" lambda examples: add_to_stream(examples, pt2death, last=True, prefix=None, token_type='death'),\n", |
|
|
562 |
" batched=True,\n", |
|
|
563 |
" load_from_cache_file=False,\n", |
|
|
564 |
" num_proc=NUM_PROC)" |
|
|
565 |
] |
|
|
566 |
}, |
|
|
567 |
{ |
|
|
568 |
"cell_type": "markdown", |
|
|
569 |
"id": "b5c995e2", |
|
|
570 |
"metadata": {}, |
|
|
571 |
"source": [ |
|
|
572 |
"# Bucket and split" |
|
|
573 |
] |
|
|
574 |
}, |
|
|
575 |
{ |
|
|
576 |
"cell_type": "code", |
|
|
577 |
"execution_count": null, |
|
|
578 |
"id": "3c019959", |
|
|
579 |
"metadata": { |
|
|
580 |
"scrolled": true |
|
|
581 |
}, |
|
|
582 |
"outputs": [], |
|
|
583 |
"source": [ |
|
|
584 |
"dataset = dataset.map(\n", |
|
|
585 |
" lambda examples: bucket_concepts(examples, bucket_size_seconds=DAYS*24*60*60, duration_separator=False),\n", |
|
|
586 |
" batched=True,\n", |
|
|
587 |
" load_from_cache_file=False,\n", |
|
|
588 |
" num_proc=NUM_PROC)" |
|
|
589 |
] |
|
|
590 |
}, |
|
|
591 |
{ |
|
|
592 |
"cell_type": "code", |
|
|
593 |
"execution_count": null, |
|
|
594 |
"id": "18804746", |
|
|
595 |
"metadata": {}, |
|
|
596 |
"outputs": [], |
|
|
597 |
"source": [ |
|
|
598 |
"dataset" |
|
|
599 |
] |
|
|
600 |
}, |
|
|
601 |
{ |
|
|
602 |
"cell_type": "markdown", |
|
|
603 |
"id": "27383ac4", |
|
|
604 |
"metadata": {}, |
|
|
605 |
"source": [ |
|
|
606 |
"## Trim long streams" |
|
|
607 |
] |
|
|
608 |
}, |
|
|
609 |
{ |
|
|
610 |
"cell_type": "code", |
|
|
611 |
"execution_count": null, |
|
|
612 |
"id": "460f779e", |
|
|
613 |
"metadata": {}, |
|
|
614 |
"outputs": [], |
|
|
615 |
"source": [ |
|
|
616 |
"from collections import defaultdict\n", |
|
|
617 |
"lns = []\n", |
|
|
618 |
"for _dataset in get_all_splits(dataset):\n", |
|
|
619 |
" for stream in _dataset['stream']:\n", |
|
|
620 |
" lns.append(len(stream))\n", |
|
|
621 |
"pickle.dump(lns, PT_LNS_PATH)" |
|
|
622 |
] |
|
|
623 |
}, |
|
|
624 |
{ |
|
|
625 |
"cell_type": "code", |
|
|
626 |
"execution_count": null, |
|
|
627 |
"id": "e2c18011", |
|
|
628 |
"metadata": {}, |
|
|
629 |
"outputs": [], |
|
|
630 |
"source": [ |
|
|
631 |
"lns = pickle.load(PT_LNS_PATH)" |
|
|
632 |
] |
|
|
633 |
}, |
|
|
634 |
{ |
|
|
635 |
"cell_type": "code", |
|
|
636 |
"execution_count": null, |
|
|
637 |
"id": "f44e23e0", |
|
|
638 |
"metadata": {}, |
|
|
639 |
"outputs": [], |
|
|
640 |
"source": [ |
|
|
641 |
"len(lns)" |
|
|
642 |
] |
|
|
643 |
}, |
|
|
644 |
{ |
|
|
645 |
"cell_type": "code", |
|
|
646 |
"execution_count": null, |
|
|
647 |
"id": "9ebf1af4", |
|
|
648 |
"metadata": {}, |
|
|
649 |
"outputs": [], |
|
|
650 |
"source": [ |
|
|
651 |
"max(lns)" |
|
|
652 |
] |
|
|
653 |
}, |
|
|
654 |
{ |
|
|
655 |
"cell_type": "code", |
|
|
656 |
"execution_count": null, |
|
|
657 |
"id": "78d8b228", |
|
|
658 |
"metadata": {}, |
|
|
659 |
"outputs": [], |
|
|
660 |
"source": [ |
|
|
661 |
"max_len = int(np.percentile(lns, 95))\n", |
|
|
662 |
"max_len" |
|
|
663 |
] |
|
|
664 |
}, |
|
|
665 |
{ |
|
|
666 |
"cell_type": "code", |
|
|
667 |
"execution_count": null, |
|
|
668 |
"id": "f50eaf63", |
|
|
669 |
"metadata": { |
|
|
670 |
"scrolled": true |
|
|
671 |
}, |
|
|
672 |
"outputs": [], |
|
|
673 |
"source": [ |
|
|
674 |
"fig = px.histogram(x=[x for x in lns if x < max_len and x > 5], labels={'x': 'length'})" |
|
|
675 |
] |
|
|
676 |
}, |
|
|
677 |
{ |
|
|
678 |
"cell_type": "code", |
|
|
679 |
"execution_count": null, |
|
|
680 |
"id": "67531287", |
|
|
681 |
"metadata": {}, |
|
|
682 |
"outputs": [], |
|
|
683 |
"source": [ |
|
|
684 |
"fig.write_html(\"./dataset-info/\" + RUN_NAME + \".html\")" |
|
|
685 |
] |
|
|
686 |
}, |
|
|
687 |
{ |
|
|
688 |
"cell_type": "code", |
|
|
689 |
"execution_count": null, |
|
|
690 |
"id": "5426144f", |
|
|
691 |
"metadata": {}, |
|
|
692 |
"outputs": [], |
|
|
693 |
"source": [ |
|
|
694 |
"dataset = filter_by_count(dataset, min_count=0, min_count_global=0, min_length=10, max_length=max_len, \n", |
|
|
695 |
" num_proc=NUM_PROC, token_cnt=token_cnt)" |
|
|
696 |
] |
|
|
697 |
}, |
|
|
698 |
{ |
|
|
699 |
"cell_type": "code", |
|
|
700 |
"execution_count": null, |
|
|
701 |
"id": "71c14b2b", |
|
|
702 |
"metadata": {}, |
|
|
703 |
"outputs": [], |
|
|
704 |
"source": [ |
|
|
705 |
"dataset" |
|
|
706 |
] |
|
|
707 |
}, |
|
|
708 |
{ |
|
|
709 |
"cell_type": "markdown", |
|
|
710 |
"id": "fb87c646", |
|
|
711 |
"metadata": {}, |
|
|
712 |
"source": [ |
|
|
713 |
"## Split to max len" |
|
|
714 |
] |
|
|
715 |
}, |
|
|
716 |
{ |
|
|
717 |
"cell_type": "code", |
|
|
718 |
"execution_count": null, |
|
|
719 |
"id": "0ffc1da8", |
|
|
720 |
"metadata": { |
|
|
721 |
"scrolled": true |
|
|
722 |
}, |
|
|
723 |
"outputs": [], |
|
|
724 |
"source": [ |
|
|
725 |
"dataset = dataset.map(\n", |
|
|
726 |
" lambda examples: split_stream(examples, max_seq_len=MAX_SEQ_LEN-32),\n", |
|
|
727 |
" batched=True,\n", |
|
|
728 |
" load_from_cache_file=False,\n", |
|
|
729 |
" num_proc=NUM_PROC)" |
|
|
730 |
] |
|
|
731 |
}, |
|
|
732 |
{ |
|
|
733 |
"cell_type": "markdown", |
|
|
734 |
"id": "577beded", |
|
|
735 |
"metadata": {}, |
|
|
736 |
"source": [ |
|
|
737 |
"## Save again" |
|
|
738 |
] |
|
|
739 |
}, |
|
|
740 |
{ |
|
|
741 |
"cell_type": "code", |
|
|
742 |
"execution_count": null, |
|
|
743 |
"id": "9e18f654", |
|
|
744 |
"metadata": {}, |
|
|
745 |
"outputs": [], |
|
|
746 |
"source": [ |
|
|
747 |
"dataset.save_to_disk(ALMOST_PREPARED_DATASET_SPLIT_PATH)" |
|
|
748 |
] |
|
|
749 |
}, |
|
|
750 |
{ |
|
|
751 |
"cell_type": "code", |
|
|
752 |
"execution_count": null, |
|
|
753 |
"id": "da54723d", |
|
|
754 |
"metadata": {}, |
|
|
755 |
"outputs": [], |
|
|
756 |
"source": [ |
|
|
757 |
"dataset = datasets.load_from_disk(ALMOST_PREPARED_DATASET_SPLIT_PATH)" |
|
|
758 |
] |
|
|
759 |
}, |
|
|
760 |
{ |
|
|
761 |
"cell_type": "code", |
|
|
762 |
"execution_count": null, |
|
|
763 |
"id": "2b10396a", |
|
|
764 |
"metadata": {}, |
|
|
765 |
"outputs": [], |
|
|
766 |
"source": [ |
|
|
767 |
"dataset" |
|
|
768 |
] |
|
|
769 |
}, |
|
|
770 |
{ |
|
|
771 |
"cell_type": "markdown", |
|
|
772 |
"id": "60b7eb32", |
|
|
773 |
"metadata": {}, |
|
|
774 |
"source": [ |
|
|
775 |
"# Add DOD and TTD" |
|
|
776 |
] |
|
|
777 |
}, |
|
|
778 |
{ |
|
|
779 |
"cell_type": "code", |
|
|
780 |
"execution_count": null, |
|
|
781 |
"id": "d04702ae", |
|
|
782 |
"metadata": { |
|
|
783 |
"scrolled": true |
|
|
784 |
}, |
|
|
785 |
"outputs": [], |
|
|
786 |
"source": [ |
|
|
787 |
"pt2dob_timestamp = {str(k):v for k,v in pickle.load(PT_DOB_PATH).items()}\n", |
|
|
788 |
"dataset = dataset.map(\n", |
|
|
789 |
" lambda examples: add_age(examples, pt2dob_timestamp=pt2dob_timestamp),\n", |
|
|
790 |
" batched=True,\n", |
|
|
791 |
" load_from_cache_file=False,\n", |
|
|
792 |
" num_proc=NUM_PROC)" |
|
|
793 |
] |
|
|
794 |
}, |
|
|
795 |
{ |
|
|
796 |
"cell_type": "code", |
|
|
797 |
"execution_count": null, |
|
|
798 |
"id": "79d57596", |
|
|
799 |
"metadata": {}, |
|
|
800 |
"outputs": [], |
|
|
801 |
"source": [ |
|
|
802 |
"\"\"\"\n", |
|
|
803 |
"pt2dod_timestamp = {str(k):v for k,v in pickle.load(PT_DOD_PATH).items()}\n", |
|
|
804 |
"# ADD time to die\n", |
|
|
805 |
"dataset = dataset.map(\n", |
|
|
806 |
" lambda examples: add_ttd(examples, pt2dod_timestamp=pt2dod_timestamp, ttd_normalizer=14 * 24 * 60 * 60),\n", |
|
|
807 |
" batched=True,\n", |
|
|
808 |
" load_from_cache_file=False,\n", |
|
|
809 |
" num_proc=NUM_PROC)\n", |
|
|
810 |
"\"\"\"" |
|
|
811 |
] |
|
|
812 |
}, |
|
|
813 |
{ |
|
|
814 |
"cell_type": "markdown", |
|
|
815 |
"id": "312a702f", |
|
|
816 |
"metadata": {}, |
|
|
817 |
"source": [ |
|
|
818 |
"### Another way for TTD" |
|
|
819 |
] |
|
|
820 |
}, |
|
|
821 |
{ |
|
|
822 |
"cell_type": "code", |
|
|
823 |
"execution_count": null, |
|
|
824 |
"id": "88aca6b0", |
|
|
825 |
"metadata": {}, |
|
|
826 |
"outputs": [], |
|
|
827 |
"source": [ |
|
|
828 |
"\"\"\"\n", |
|
|
829 |
"# ADD time to die\n", |
|
|
830 |
"dataset['train'] = dataset['train'].map(\n", |
|
|
831 |
" lambda examples: add_ttd(examples, pt2dod_timestamp=pt2dod_timestamp, ttd_normalizer=14 * 24 * 60 * 60),\n", |
|
|
832 |
" batched=True,\n", |
|
|
833 |
" load_from_cache_file=False,\n", |
|
|
834 |
" num_proc=NUM_PROC)\n", |
|
|
835 |
"\n", |
|
|
836 |
"dataset['test'] = dataset['test'].map(\n", |
|
|
837 |
" lambda examples: add_ttd(examples, pt2dod_timestamp=pt2dod_timestamp, ttd_normalizer=14 * 24 * 60 * 60,\n", |
|
|
838 |
" max_nttd=10, ttd_prob=1, duplicate_streams=True),\n", |
|
|
839 |
" batched=True,\n", |
|
|
840 |
" load_from_cache_file=False,\n", |
|
|
841 |
" num_proc=NUM_PROC)\n", |
|
|
842 |
"\"\"\"" |
|
|
843 |
] |
|
|
844 |
}, |
|
|
845 |
{ |
|
|
846 |
"cell_type": "markdown", |
|
|
847 |
"id": "a520f26a", |
|
|
848 |
"metadata": {}, |
|
|
849 |
"source": [ |
|
|
850 |
"# Add sex and ethnicity" |
|
|
851 |
] |
|
|
852 |
}, |
|
|
853 |
{ |
|
|
854 |
"cell_type": "code", |
|
|
855 |
"execution_count": null, |
|
|
856 |
"id": "fbcf3d29", |
|
|
857 |
"metadata": { |
|
|
858 |
"scrolled": true |
|
|
859 |
}, |
|
|
860 |
"outputs": [], |
|
|
861 |
"source": [ |
|
|
862 |
"# Add Sex\n", |
|
|
863 |
"pt2sex = pickle.load(PT_SEX_PATH)\n", |
|
|
864 |
"dataset = dataset.map(\n", |
|
|
865 |
" lambda examples: add_to_stream(examples, pt2sex, last=False, prefix='<SEX>', token_type='sex'),\n", |
|
|
866 |
" batched=True,\n", |
|
|
867 |
" load_from_cache_file=False,\n", |
|
|
868 |
" num_proc=NUM_PROC)" |
|
|
869 |
] |
|
|
870 |
}, |
|
|
871 |
{ |
|
|
872 |
"cell_type": "code", |
|
|
873 |
"execution_count": null, |
|
|
874 |
"id": "14005ffc", |
|
|
875 |
"metadata": { |
|
|
876 |
"scrolled": true |
|
|
877 |
}, |
|
|
878 |
"outputs": [], |
|
|
879 |
"source": [ |
|
|
880 |
"# Ethnicity\n", |
|
|
881 |
"pt2ethnicity = pickle.load(PT_ETHNICITY_PATH)\n", |
|
|
882 |
"dataset = dataset.map(\n", |
|
|
883 |
" lambda examples: add_to_stream(examples, pt2ethnicity, last=False, prefix='<ETHNICITY>', token_type='ethnicity'),\n", |
|
|
884 |
" batched=True,\n", |
|
|
885 |
" load_from_cache_file=False,\n", |
|
|
886 |
" num_proc=NUM_PROC)" |
|
|
887 |
] |
|
|
888 |
}, |
|
|
889 |
{ |
|
|
890 |
"cell_type": "markdown", |
|
|
891 |
"id": "b0dd9e11", |
|
|
892 |
"metadata": {}, |
|
|
893 |
"source": [ |
|
|
894 |
"# Final filter" |
|
|
895 |
] |
|
|
896 |
}, |
|
|
897 |
{ |
|
|
898 |
"cell_type": "code", |
|
|
899 |
"execution_count": null, |
|
|
900 |
"id": "bdb7f59b", |
|
|
901 |
"metadata": {}, |
|
|
902 |
"outputs": [], |
|
|
903 |
"source": [ |
|
|
904 |
"dataset = filter_by_count(dataset, min_count=None, min_count_global=None, min_length=10, num_proc=NUM_PROC)" |
|
|
905 |
] |
|
|
906 |
}, |
|
|
907 |
{ |
|
|
908 |
"cell_type": "markdown", |
|
|
909 |
"id": "f1ce6130", |
|
|
910 |
"metadata": {}, |
|
|
911 |
"source": [ |
|
|
912 |
"# Remove parents" |
|
|
913 |
] |
|
|
914 |
}, |
|
|
915 |
{ |
|
|
916 |
"cell_type": "code", |
|
|
917 |
"execution_count": null, |
|
|
918 |
"id": "47f86d59", |
|
|
919 |
"metadata": {}, |
|
|
920 |
"outputs": [], |
|
|
921 |
"source": [ |
|
|
922 |
"# Diseases\n", |
|
|
923 |
"cuis = [token for token in cdb.config.linking['filters']['cuis'] if token in cdb.cui2names]\n", |
|
|
924 |
"ch2parents = get_parents_map(cuis, cdb.addl_info['pt2ch'], depth=2)" |
|
|
925 |
] |
|
|
926 |
}, |
|
|
927 |
{ |
|
|
928 |
"cell_type": "code", |
|
|
929 |
"execution_count": null, |
|
|
930 |
"id": "64b4664f", |
|
|
931 |
"metadata": {}, |
|
|
932 |
"outputs": [], |
|
|
933 |
"source": [ |
|
|
934 |
"dataset = dataset.map(\n", |
|
|
935 |
" lambda examples: remove_parents_from_stream(examples, ch2parents=ch2parents, separator='<SEP>'),\n", |
|
|
936 |
" batched=True,\n", |
|
|
937 |
" load_from_cache_file=False,\n", |
|
|
938 |
" num_proc=NUM_PROC)" |
|
|
939 |
] |
|
|
940 |
}, |
|
|
941 |
{ |
|
|
942 |
"cell_type": "markdown", |
|
|
943 |
"id": "0a3aa069", |
|
|
944 |
"metadata": {}, |
|
|
945 |
"source": [ |
|
|
946 |
"## Add position IDs" |
|
|
947 |
] |
|
|
948 |
}, |
|
|
949 |
{ |
|
|
950 |
"cell_type": "code", |
|
|
951 |
"execution_count": null, |
|
|
952 |
"id": "0858f524", |
|
|
953 |
"metadata": {}, |
|
|
954 |
"outputs": [], |
|
|
955 |
"source": [ |
|
|
956 |
"dataset = dataset.map(\n", |
|
|
957 |
" lambda examples: add_position_ids(examples, separators={'<SEP>', '<SEP-1>', '<SEP-7>' '<SEP-14>', '<SEP-30>', '<SEP-365>'}),\n", |
|
|
958 |
" batched=True,\n", |
|
|
959 |
" load_from_cache_file=False,\n", |
|
|
960 |
" num_proc=NUM_PROC)" |
|
|
961 |
] |
|
|
962 |
}, |
|
|
963 |
{ |
|
|
964 |
"cell_type": "markdown", |
|
|
965 |
"id": "cf641980", |
|
|
966 |
"metadata": {}, |
|
|
967 |
"source": [ |
|
|
968 |
"# Get token_type2tokens" |
|
|
969 |
] |
|
|
970 |
}, |
|
|
971 |
{ |
|
|
972 |
"cell_type": "code", |
|
|
973 |
"execution_count": null, |
|
|
974 |
"id": "9bef3781", |
|
|
975 |
"metadata": { |
|
|
976 |
"scrolled": true |
|
|
977 |
}, |
|
|
978 |
"outputs": [], |
|
|
979 |
"source": [ |
|
|
980 |
"token_type2tokens = defaultdict(set)\n", |
|
|
981 |
"total_cnt = 0\n", |
|
|
982 |
"for _dataset in get_all_splits(dataset):\n", |
|
|
983 |
" for stream in _dataset['stream']:\n", |
|
|
984 |
" for example in stream:\n", |
|
|
985 |
" token_type2tokens[example['token_type']].add(example['token'])\n", |
|
|
986 |
" total_cnt += 1\n", |
|
|
987 |
"token_type2tokens = dict(token_type2tokens)\n", |
|
|
988 |
"pickle.dump(token_type2tokens, TOKEN_TYPES_PATH)\n", |
|
|
989 |
"fprint(\"Total number of annotations: \", total_cnt)" |
|
|
990 |
] |
|
|
991 |
}, |
|
|
992 |
{ |
|
|
993 |
"cell_type": "code", |
|
|
994 |
"execution_count": null, |
|
|
995 |
"id": "8bb1f2a1", |
|
|
996 |
"metadata": {}, |
|
|
997 |
"outputs": [], |
|
|
998 |
"source": [ |
|
|
999 |
"pickle.dump(token_type2tokens, TOKEN_TYPES_PATH)\n", |
|
|
1000 |
"fprint(\"Total number of annotations: \", total_cnt)" |
|
|
1001 |
] |
|
|
1002 |
}, |
|
|
1003 |
{ |
|
|
1004 |
"cell_type": "markdown", |
|
|
1005 |
"id": "61c34003", |
|
|
1006 |
"metadata": {}, |
|
|
1007 |
"source": [ |
|
|
1008 |
"# Cleanup stream and leave only what we need" |
|
|
1009 |
] |
|
|
1010 |
}, |
|
|
1011 |
{ |
|
|
1012 |
"cell_type": "code", |
|
|
1013 |
"execution_count": null, |
|
|
1014 |
"id": "33d5fbdb", |
|
|
1015 |
"metadata": { |
|
|
1016 |
"scrolled": true |
|
|
1017 |
}, |
|
|
1018 |
"outputs": [], |
|
|
1019 |
"source": [ |
|
|
1020 |
"dataset = dataset.map(\n", |
|
|
1021 |
" lambda examples: cleanup_stream(examples, keep_time=True, keep_type=True, keep_position_ids=True,\n", |
|
|
1022 |
" keep_context_representation=False),\n", |
|
|
1023 |
" batched=True,\n", |
|
|
1024 |
" load_from_cache_file=False,\n", |
|
|
1025 |
" num_proc=NUM_PROC)" |
|
|
1026 |
] |
|
|
1027 |
}, |
|
|
1028 |
{ |
|
|
1029 |
"cell_type": "markdown", |
|
|
1030 |
"id": "71ad6184", |
|
|
1031 |
"metadata": {}, |
|
|
1032 |
"source": [ |
|
|
1033 |
"### Save" |
|
|
1034 |
] |
|
|
1035 |
}, |
|
|
1036 |
{ |
|
|
1037 |
"cell_type": "code", |
|
|
1038 |
"execution_count": null, |
|
|
1039 |
"id": "fc98c4f0", |
|
|
1040 |
"metadata": {}, |
|
|
1041 |
"outputs": [], |
|
|
1042 |
"source": [ |
|
|
1043 |
"dataset.save_to_disk(JUST_BEFORE_ENCODING_DATASET_SPLIT_PATH)" |
|
|
1044 |
] |
|
|
1045 |
}, |
|
|
1046 |
{ |
|
|
1047 |
"cell_type": "code", |
|
|
1048 |
"execution_count": null, |
|
|
1049 |
"id": "c2b2c1e1", |
|
|
1050 |
"metadata": {}, |
|
|
1051 |
"outputs": [], |
|
|
1052 |
"source": [ |
|
|
1053 |
"dataset = datasets.load_from_disk(JUST_BEFORE_ENCODING_DATASET_SPLIT_PATH)" |
|
|
1054 |
] |
|
|
1055 |
}, |
|
|
1056 |
{ |
|
|
1057 |
"cell_type": "code", |
|
|
1058 |
"execution_count": null, |
|
|
1059 |
"id": "41ac5775", |
|
|
1060 |
"metadata": {}, |
|
|
1061 |
"outputs": [], |
|
|
1062 |
"source": [ |
|
|
1063 |
"JUST_BEFORE_ENCODING_DATASET_SPLIT_PATH" |
|
|
1064 |
] |
|
|
1065 |
}, |
|
|
1066 |
{ |
|
|
1067 |
"cell_type": "code", |
|
|
1068 |
"execution_count": null, |
|
|
1069 |
"id": "38c09fd5", |
|
|
1070 |
"metadata": {}, |
|
|
1071 |
"outputs": [], |
|
|
1072 |
"source": [ |
|
|
1073 |
"# Total number of patients fater intial filtering\n", |
|
|
1074 |
"train_len = len(dataset['train'])\n", |
|
|
1075 |
"test_len = len(dataset['test'])\n", |
|
|
1076 |
"fprint(\"Total number of pts in train: \", train_len)\n", |
|
|
1077 |
"fprint(\"Total number of pts in test: \", test_len)\n", |
|
|
1078 |
"fprint(\"Total number of pts: \", train_len + test_len)" |
|
|
1079 |
] |
|
|
1080 |
}, |
|
|
1081 |
{ |
|
|
1082 |
"cell_type": "code", |
|
|
1083 |
"execution_count": null, |
|
|
1084 |
"id": "29bcc0c4", |
|
|
1085 |
"metadata": {}, |
|
|
1086 |
"outputs": [], |
|
|
1087 |
"source": [ |
|
|
1088 |
"# Total number of annotations per type after filtering\n", |
|
|
1089 |
"cnt_per_type_after = {}\n", |
|
|
1090 |
"for _dataset in get_all_splits(dataset):\n", |
|
|
1091 |
" for stream in _dataset['stream']:\n", |
|
|
1092 |
" for cui in stream:\n", |
|
|
1093 |
" if cat.cdb.cui2type_ids.get(cui, None):\n", |
|
|
1094 |
" t = list(cat.cdb.cui2type_ids[cui])[0]\n", |
|
|
1095 |
" cnt_per_type_after[t] = cnt_per_type_after.get(t, 0) + 1" |
|
|
1096 |
] |
|
|
1097 |
}, |
|
|
1098 |
{ |
|
|
1099 |
"cell_type": "code", |
|
|
1100 |
"execution_count": null, |
|
|
1101 |
"id": "208c24fb", |
|
|
1102 |
"metadata": {}, |
|
|
1103 |
"outputs": [], |
|
|
1104 |
"source": [ |
|
|
1105 |
"fprint(\"Total number of annotations per type: \\n\")\n", |
|
|
1106 |
"for t in cnt_per_type_after:\n", |
|
|
1107 |
" fprint(\"{:30}: {}\".format(cat.cdb.addl_info['type_id2name'][t].title(), cnt_per_type_after[t]))" |
|
|
1108 |
] |
|
|
1109 |
}, |
|
|
1110 |
{ |
|
|
1111 |
"cell_type": "markdown", |
|
|
1112 |
"id": "b2b4d62e", |
|
|
1113 |
"metadata": {}, |
|
|
1114 |
"source": [ |
|
|
1115 |
"# Make tokenizer" |
|
|
1116 |
] |
|
|
1117 |
}, |
|
|
1118 |
{ |
|
|
1119 |
"cell_type": "code", |
|
|
1120 |
"execution_count": null, |
|
|
1121 |
"id": "8cf2ec1a", |
|
|
1122 |
"metadata": {}, |
|
|
1123 |
"outputs": [], |
|
|
1124 |
"source": [ |
|
|
1125 |
"extra_tokenizer = None\n", |
|
|
1126 |
"#extra_tokenizer = SimpleMapTokenizer.load(\"./data/time/models/slam_tokenizer_annotations_stream_phase2_1d_200_ALL_TYPES.pickle\")" |
|
|
1127 |
] |
|
|
1128 |
}, |
|
|
1129 |
{ |
|
|
1130 |
"cell_type": "code", |
|
|
1131 |
"execution_count": null, |
|
|
1132 |
"id": "e150f156", |
|
|
1133 |
"metadata": {}, |
|
|
1134 |
"outputs": [], |
|
|
1135 |
"source": [ |
|
|
1136 |
"token_type2tokens = pickle.load(TOKEN_TYPES_PATH)\n", |
|
|
1137 |
"extra_concepts = None\n", |
|
|
1138 |
"if extra_tokenizer is not None:\n", |
|
|
1139 |
" extra_concepts = list(extra_tokenizer.tkn2id.keys())\n", |
|
|
1140 |
"\n", |
|
|
1141 |
" for k,v in extra_tokenizer.token_type2tokens.items():\n", |
|
|
1142 |
" if k in token_type2tokens:\n", |
|
|
1143 |
" token_type2tokens[k].update(extra_tokenizer.token_type2tokens[k])\n", |
|
|
1144 |
" else:\n", |
|
|
1145 |
" token_type2tokens[k] = extra_tokenizer.token_type2tokens[k]" |
|
|
1146 |
] |
|
|
1147 |
}, |
|
|
1148 |
{ |
|
|
1149 |
"cell_type": "code", |
|
|
1150 |
"execution_count": null, |
|
|
1151 |
"id": "767d8549", |
|
|
1152 |
"metadata": {}, |
|
|
1153 |
"outputs": [], |
|
|
1154 |
"source": [ |
|
|
1155 |
"_types = list(cdb.addl_info['type_id2name'].keys()) + list(token_type2tokens.keys())\n", |
|
|
1156 |
"embeddings, tkn2id, id2tkn, = get_embeddings_for_tokens(dataset, cdb, context_type='xlong', types=_types,\n", |
|
|
1157 |
" concepts=extra_concepts)" |
|
|
1158 |
] |
|
|
1159 |
}, |
|
|
1160 |
{ |
|
|
1161 |
"cell_type": "code", |
|
|
1162 |
"execution_count": null, |
|
|
1163 |
"id": "e3b9946e", |
|
|
1164 |
"metadata": {}, |
|
|
1165 |
"outputs": [], |
|
|
1166 |
"source": [ |
|
|
1167 |
"tkn2name = {tkn:cdb.get_name(tkn) for tkn in tkn2id.keys()}\n", |
|
|
1168 |
"tokenizer = SimpleMapTokenizer(tkn2id=tkn2id, pad_id=tkn2id['<PAD>'], tkn2name=tkn2name,\n", |
|
|
1169 |
" token_type2tokens=token_type2tokens, embeddings=embeddings,\n", |
|
|
1170 |
" global_token_cnt=token_cnt, max_len=MAX_SEQ_LEN)" |
|
|
1171 |
] |
|
|
1172 |
}, |
|
|
1173 |
{ |
|
|
1174 |
"cell_type": "code", |
|
|
1175 |
"execution_count": null, |
|
|
1176 |
"id": "51b9cce4", |
|
|
1177 |
"metadata": {}, |
|
|
1178 |
"outputs": [], |
|
|
1179 |
"source": [ |
|
|
1180 |
"assert len(tokenizer.tkn2id) == len(tokenizer.id2tkn)\n", |
|
|
1181 |
"assert len(tokenizer.embeddings) == len(tokenizer.id2tkn)\n", |
|
|
1182 |
"assert len(tokenizer.tkn2name) == len(tokenizer.id2tkn)\n", |
|
|
1183 |
"fprint(tokenizer.pad_id, tokenizer.id2tkn[tokenizer.pad_id])" |
|
|
1184 |
] |
|
|
1185 |
}, |
|
|
1186 |
{ |
|
|
1187 |
"cell_type": "code", |
|
|
1188 |
"execution_count": null, |
|
|
1189 |
"id": "031b224b", |
|
|
1190 |
"metadata": {}, |
|
|
1191 |
"outputs": [], |
|
|
1192 |
"source": [ |
|
|
1193 |
"len(tokenizer.tkn2name)" |
|
|
1194 |
] |
|
|
1195 |
}, |
|
|
1196 |
{ |
|
|
1197 |
"cell_type": "code", |
|
|
1198 |
"execution_count": null, |
|
|
1199 |
"id": "0295fe2d", |
|
|
1200 |
"metadata": {}, |
|
|
1201 |
"outputs": [], |
|
|
1202 |
"source": [ |
|
|
1203 |
"# save\n", |
|
|
1204 |
"tokenizer.save(TOKENIZER_PATH)" |
|
|
1205 |
] |
|
|
1206 |
}, |
|
|
1207 |
{ |
|
|
1208 |
"cell_type": "code", |
|
|
1209 |
"execution_count": null, |
|
|
1210 |
"id": "f6cd9f04", |
|
|
1211 |
"metadata": {}, |
|
|
1212 |
"outputs": [], |
|
|
1213 |
"source": [ |
|
|
1214 |
"# Total number of different concepts after all filtering\n", |
|
|
1215 |
"fprint(\"Total number of concepts after filtering: \", len(tokenizer.tkn2id))\n", |
|
|
1216 |
"fprint(\"\")" |
|
|
1217 |
] |
|
|
1218 |
}, |
|
|
1219 |
{ |
|
|
1220 |
"cell_type": "code", |
|
|
1221 |
"execution_count": null, |
|
|
1222 |
"id": "b9f996f0", |
|
|
1223 |
"metadata": {}, |
|
|
1224 |
"outputs": [], |
|
|
1225 |
"source": [ |
|
|
1226 |
"# Total number annotations after all filtering\n", |
|
|
1227 |
"fprint(\"Total number of annotations after filtering: \", sum([x for x in cnt_per_type_after.values()]))\n", |
|
|
1228 |
"fprint(\"\")" |
|
|
1229 |
] |
|
|
1230 |
}, |
|
|
1231 |
{ |
|
|
1232 |
"cell_type": "markdown", |
|
|
1233 |
"id": "862166a9", |
|
|
1234 |
"metadata": {}, |
|
|
1235 |
"source": [ |
|
|
1236 |
"# Print number of different concepts per type after filtering" |
|
|
1237 |
] |
|
|
1238 |
}, |
|
|
1239 |
{ |
|
|
1240 |
"cell_type": "code", |
|
|
1241 |
"execution_count": null, |
|
|
1242 |
"id": "82ebd72c", |
|
|
1243 |
"metadata": {}, |
|
|
1244 |
"outputs": [], |
|
|
1245 |
"source": [ |
|
|
1246 |
"cnt_per_type = {}\n", |
|
|
1247 |
"for cui in tkn2id:\n", |
|
|
1248 |
" if cat.cdb.cui2type_ids.get(cui, ['Other']):\n", |
|
|
1249 |
" t = list(cat.cdb.cui2type_ids.get(cui, ['Other']))[0]\n", |
|
|
1250 |
" cnt_per_type[t] = cnt_per_type.get(t, 0) + 1\n", |
|
|
1251 |
"fprint(\"Total number of <<different>> concepts per type after filtering\")\n", |
|
|
1252 |
"for t in cnt_per_type:\n", |
|
|
1253 |
" fprint(\"{:30}: {}\".format(cat.cdb.addl_info['type_id2name'].get(t, t).title(), cnt_per_type[t]))\n", |
|
|
1254 |
"fprint(\"\")" |
|
|
1255 |
] |
|
|
1256 |
}, |
|
|
1257 |
{ |
|
|
1258 |
"cell_type": "markdown", |
|
|
1259 |
"id": "19cf388d", |
|
|
1260 |
"metadata": {}, |
|
|
1261 |
"source": [ |
|
|
1262 |
"# Create global tokenizer" |
|
|
1263 |
] |
|
|
1264 |
}, |
|
|
1265 |
{ |
|
|
1266 |
"cell_type": "code", |
|
|
1267 |
"execution_count": null, |
|
|
1268 |
"id": "ac9c9839", |
|
|
1269 |
"metadata": {}, |
|
|
1270 |
"outputs": [], |
|
|
1271 |
"source": [ |
|
|
1272 |
"_types = list(cdb.addl_info['type_id2name'].keys()) + list(token_type2tokens.keys())\n", |
|
|
1273 |
"concepts = list(cat.config.linking['filters']['cuis'])\n", |
|
|
1274 |
"embeddings, tkn2id, id2tkn, = get_embeddings_for_tokens(dataset, cdb, context_type='xlong', types=_types, concepts=concepts)" |
|
|
1275 |
] |
|
|
1276 |
}, |
|
|
1277 |
{ |
|
|
1278 |
"cell_type": "code", |
|
|
1279 |
"execution_count": null, |
|
|
1280 |
"id": "eabbbf88", |
|
|
1281 |
"metadata": {}, |
|
|
1282 |
"outputs": [], |
|
|
1283 |
"source": [ |
|
|
1284 |
"tkn2name = {tkn:cdb.get_name(tkn) for tkn in tkn2id.keys()}\n", |
|
|
1285 |
"tokenizer = SimpleMapTokenizer(tkn2id=tkn2id, pad_id=tkn2id['<PAD>'], tkn2name=tkn2name,\n", |
|
|
1286 |
" token_type2tokens=token_type2tokens, embeddings=embeddings,\n", |
|
|
1287 |
" global_token_cnt=token_cnt, max_len=MAX_SEQ_LEN)" |
|
|
1288 |
] |
|
|
1289 |
}, |
|
|
1290 |
{ |
|
|
1291 |
"cell_type": "code", |
|
|
1292 |
"execution_count": null, |
|
|
1293 |
"id": "22833eec", |
|
|
1294 |
"metadata": {}, |
|
|
1295 |
"outputs": [], |
|
|
1296 |
"source": [ |
|
|
1297 |
"tokenizer.save(BASE_TOKENIZER_PATH)" |
|
|
1298 |
] |
|
|
1299 |
}, |
|
|
1300 |
{ |
|
|
1301 |
"cell_type": "markdown", |
|
|
1302 |
"id": "4c06d09b", |
|
|
1303 |
"metadata": {}, |
|
|
1304 |
"source": [ |
|
|
1305 |
"# Convert tokens to IDs" |
|
|
1306 |
] |
|
|
1307 |
}, |
|
|
1308 |
{ |
|
|
1309 |
"cell_type": "code", |
|
|
1310 |
"execution_count": null, |
|
|
1311 |
"id": "864df946", |
|
|
1312 |
"metadata": {}, |
|
|
1313 |
"outputs": [], |
|
|
1314 |
"source": [ |
|
|
1315 |
"if FROM_BASE:\n", |
|
|
1316 |
" print(\"USING BASE TOKENIZER\")\n", |
|
|
1317 |
" TOKENIZER_PATH = BASE_TOKENIZER_PATH" |
|
|
1318 |
] |
|
|
1319 |
}, |
|
|
1320 |
{ |
|
|
1321 |
"cell_type": "code", |
|
|
1322 |
"execution_count": null, |
|
|
1323 |
"id": "e4540c4a", |
|
|
1324 |
"metadata": {}, |
|
|
1325 |
"outputs": [], |
|
|
1326 |
"source": [ |
|
|
1327 |
"tokenizer = SimpleMapTokenizer.load(TOKENIZER_PATH)" |
|
|
1328 |
] |
|
|
1329 |
}, |
|
|
1330 |
{ |
|
|
1331 |
"cell_type": "code", |
|
|
1332 |
"execution_count": null, |
|
|
1333 |
"id": "548e8e3b", |
|
|
1334 |
"metadata": {}, |
|
|
1335 |
"outputs": [], |
|
|
1336 |
"source": [ |
|
|
1337 |
"encoded_dataset = dataset.map(\n", |
|
|
1338 |
" lambda examples: tokenizer.encode(examples),\n", |
|
|
1339 |
" batched=True,\n", |
|
|
1340 |
" remove_columns=['stream'],\n", |
|
|
1341 |
" load_from_cache_file=False,\n", |
|
|
1342 |
" num_proc=NUM_PROC)" |
|
|
1343 |
] |
|
|
1344 |
}, |
|
|
1345 |
{ |
|
|
1346 |
"cell_type": "code", |
|
|
1347 |
"execution_count": null, |
|
|
1348 |
"id": "8718ae76", |
|
|
1349 |
"metadata": {}, |
|
|
1350 |
"outputs": [], |
|
|
1351 |
"source": [ |
|
|
1352 |
"encoded_dataset.save_to_disk(PREPARED_DATASET_SPLIT_PATH)" |
|
|
1353 |
] |
|
|
1354 |
}, |
|
|
1355 |
{ |
|
|
1356 |
"cell_type": "code", |
|
|
1357 |
"execution_count": null, |
|
|
1358 |
"id": "340dd11d", |
|
|
1359 |
"metadata": {}, |
|
|
1360 |
"outputs": [], |
|
|
1361 |
"source": [ |
|
|
1362 |
"PREPARED_DATASET_SPLIT_PATH" |
|
|
1363 |
] |
|
|
1364 |
}, |
|
|
1365 |
{ |
|
|
1366 |
"cell_type": "code", |
|
|
1367 |
"execution_count": null, |
|
|
1368 |
"id": "e512ab8c", |
|
|
1369 |
"metadata": {}, |
|
|
1370 |
"outputs": [], |
|
|
1371 |
"source": [ |
|
|
1372 |
"TOKENIZER_PATH" |
|
|
1373 |
] |
|
|
1374 |
}, |
|
|
1375 |
{ |
|
|
1376 |
"cell_type": "markdown", |
|
|
1377 |
"id": "6715bb47", |
|
|
1378 |
"metadata": {}, |
|
|
1379 |
"source": [ |
|
|
1380 |
"# Test is all OK" |
|
|
1381 |
] |
|
|
1382 |
}, |
|
|
1383 |
{ |
|
|
1384 |
"cell_type": "code", |
|
|
1385 |
"execution_count": null, |
|
|
1386 |
"id": "60881f72", |
|
|
1387 |
"metadata": {}, |
|
|
1388 |
"outputs": [], |
|
|
1389 |
"source": [ |
|
|
1390 |
"encoded_dataset = datasets.load_from_disk(PREPARED_DATASET_SPLIT_PATH)" |
|
|
1391 |
] |
|
|
1392 |
}, |
|
|
1393 |
{ |
|
|
1394 |
"cell_type": "code", |
|
|
1395 |
"execution_count": null, |
|
|
1396 |
"id": "2f3c066f", |
|
|
1397 |
"metadata": {}, |
|
|
1398 |
"outputs": [], |
|
|
1399 |
"source": [ |
|
|
1400 |
"dataset = datasets.load_from_disk(JUST_BEFORE_ENCODING_DATASET_SPLIT_PATH)" |
|
|
1401 |
] |
|
|
1402 |
}, |
|
|
1403 |
{ |
|
|
1404 |
"cell_type": "code", |
|
|
1405 |
"execution_count": null, |
|
|
1406 |
"id": "6dab3686", |
|
|
1407 |
"metadata": {}, |
|
|
1408 |
"outputs": [], |
|
|
1409 |
"source": [ |
|
|
1410 |
"tokenizer = SimpleMapTokenizer.load(TOKENIZER_PATH)" |
|
|
1411 |
] |
|
|
1412 |
}, |
|
|
1413 |
{ |
|
|
1414 |
"cell_type": "code", |
|
|
1415 |
"execution_count": null, |
|
|
1416 |
"id": "035a55fb", |
|
|
1417 |
"metadata": {}, |
|
|
1418 |
"outputs": [], |
|
|
1419 |
"source": [ |
|
|
1420 |
"encoded_dataset" |
|
|
1421 |
] |
|
|
1422 |
}, |
|
|
1423 |
{ |
|
|
1424 |
"cell_type": "code", |
|
|
1425 |
"execution_count": null, |
|
|
1426 |
"id": "b89f84af", |
|
|
1427 |
"metadata": {}, |
|
|
1428 |
"outputs": [], |
|
|
1429 |
"source": [ |
|
|
1430 |
"dataset" |
|
|
1431 |
] |
|
|
1432 |
}, |
|
|
1433 |
{ |
|
|
1434 |
"cell_type": "code", |
|
|
1435 |
"execution_count": null, |
|
|
1436 |
"id": "21d66a24", |
|
|
1437 |
"metadata": {}, |
|
|
1438 |
"outputs": [], |
|
|
1439 |
"source": [ |
|
|
1440 |
"ind = 1096" |
|
|
1441 |
] |
|
|
1442 |
}, |
|
|
1443 |
{ |
|
|
1444 |
"cell_type": "code", |
|
|
1445 |
"execution_count": null, |
|
|
1446 |
"id": "664dd895", |
|
|
1447 |
"metadata": {}, |
|
|
1448 |
"outputs": [], |
|
|
1449 |
"source": [ |
|
|
1450 |
"from datetime import datetime" |
|
|
1451 |
] |
|
|
1452 |
}, |
|
|
1453 |
{ |
|
|
1454 |
"cell_type": "code", |
|
|
1455 |
"execution_count": null, |
|
|
1456 |
"id": "49b1cbc1", |
|
|
1457 |
"metadata": { |
|
|
1458 |
"scrolled": true |
|
|
1459 |
}, |
|
|
1460 |
"outputs": [], |
|
|
1461 |
"source": [ |
|
|
1462 |
"[cdb.get_name(x) for x in dataset['train'][ind]['stream']]" |
|
|
1463 |
] |
|
|
1464 |
}, |
|
|
1465 |
{ |
|
|
1466 |
"cell_type": "code", |
|
|
1467 |
"execution_count": null, |
|
|
1468 |
"id": "9ec0594e", |
|
|
1469 |
"metadata": { |
|
|
1470 |
"scrolled": true |
|
|
1471 |
}, |
|
|
1472 |
"outputs": [], |
|
|
1473 |
"source": [ |
|
|
1474 |
"for ty, p, t, c in zip(encoded_dataset['train'][ind]['token_type'], encoded_dataset['train'][ind]['position_ids'], encoded_dataset['train'][ind]['time'], tokenizer.convert_ids2tokens(encoded_dataset['train'][ind]['input_ids'])):\n", |
|
|
1475 |
" print(datetime.fromtimestamp(t), p, \"{:20}\".format(ty), c)" |
|
|
1476 |
] |
|
|
1477 |
}, |
|
|
1478 |
{ |
|
|
1479 |
"cell_type": "code", |
|
|
1480 |
"execution_count": null, |
|
|
1481 |
"id": "19003ff8", |
|
|
1482 |
"metadata": {}, |
|
|
1483 |
"outputs": [], |
|
|
1484 |
"source": [ |
|
|
1485 |
"encoded_dataset['train'][ind]['patient_id']" |
|
|
1486 |
] |
|
|
1487 |
}, |
|
|
1488 |
{ |
|
|
1489 |
"cell_type": "code", |
|
|
1490 |
"execution_count": null, |
|
|
1491 |
"id": "1fc5460d", |
|
|
1492 |
"metadata": {}, |
|
|
1493 |
"outputs": [], |
|
|
1494 |
"source": [ |
|
|
1495 |
"ds_info.close()" |
|
|
1496 |
] |
|
|
1497 |
}, |
|
|
1498 |
{ |
|
|
1499 |
"cell_type": "markdown", |
|
|
1500 |
"id": "e5a3cc65", |
|
|
1501 |
"metadata": {}, |
|
|
1502 |
"source": [ |
|
|
1503 |
"# Preapre for Foresight" |
|
|
1504 |
] |
|
|
1505 |
}, |
|
|
1506 |
{ |
|
|
1507 |
"cell_type": "code", |
|
|
1508 |
"execution_count": null, |
|
|
1509 |
"id": "2dec8a19", |
|
|
1510 |
"metadata": {}, |
|
|
1511 |
"outputs": [], |
|
|
1512 |
"source": [ |
|
|
1513 |
"ind = 32330" |
|
|
1514 |
] |
|
|
1515 |
}, |
|
|
1516 |
{ |
|
|
1517 |
"cell_type": "code", |
|
|
1518 |
"execution_count": null, |
|
|
1519 |
"id": "2821af66", |
|
|
1520 |
"metadata": {}, |
|
|
1521 |
"outputs": [], |
|
|
1522 |
"source": [ |
|
|
1523 |
"import json" |
|
|
1524 |
] |
|
|
1525 |
}, |
|
|
1526 |
{ |
|
|
1527 |
"cell_type": "code", |
|
|
1528 |
"execution_count": null, |
|
|
1529 |
"id": "55457df7", |
|
|
1530 |
"metadata": { |
|
|
1531 |
"scrolled": true |
|
|
1532 |
}, |
|
|
1533 |
"outputs": [], |
|
|
1534 |
"source": [ |
|
|
1535 |
"[cdb.get_name(x) for x in dataset['train'][ind]['stream']]" |
|
|
1536 |
] |
|
|
1537 |
}, |
|
|
1538 |
{ |
|
|
1539 |
"cell_type": "code", |
|
|
1540 |
"execution_count": null, |
|
|
1541 |
"id": "196eaf9d", |
|
|
1542 |
"metadata": { |
|
|
1543 |
"scrolled": true |
|
|
1544 |
}, |
|
|
1545 |
"outputs": [], |
|
|
1546 |
"source": [ |
|
|
1547 |
"for i, c in enumerate(dataset['train'][ind]['stream']):\n", |
|
|
1548 |
" print(i)\n", |
|
|
1549 |
" if i > 20 and c not in dataset['train'][ind]['stream'][0:i]:\n", |
|
|
1550 |
" print(i, c, cdb.get_name(c))" |
|
|
1551 |
] |
|
|
1552 |
}, |
|
|
1553 |
{ |
|
|
1554 |
"cell_type": "code", |
|
|
1555 |
"execution_count": null, |
|
|
1556 |
"id": "4a159ae3", |
|
|
1557 |
"metadata": {}, |
|
|
1558 |
"outputs": [], |
|
|
1559 |
"source": [ |
|
|
1560 |
"out = []\n", |
|
|
1561 |
"for i, cui in enumerate(dataset['train'][ind]['stream'][:161]):\n", |
|
|
1562 |
" d = {\n", |
|
|
1563 |
" 'id': cui,\n", |
|
|
1564 |
" 'label': cdb.get_name(cui),\n", |
|
|
1565 |
" 'count': 1000000,\n", |
|
|
1566 |
" 'name': cdb.get_name(cui),\n", |
|
|
1567 |
" 'cui': cui,\n", |
|
|
1568 |
" 'saliency': 0,\n", |
|
|
1569 |
" 'uid': i\n", |
|
|
1570 |
" }\n", |
|
|
1571 |
" out.append(d)" |
|
|
1572 |
] |
|
|
1573 |
}, |
|
|
1574 |
{ |
|
|
1575 |
"cell_type": "code", |
|
|
1576 |
"execution_count": null, |
|
|
1577 |
"id": "97f40a06", |
|
|
1578 |
"metadata": {}, |
|
|
1579 |
"outputs": [], |
|
|
1580 |
"source": [ |
|
|
1581 |
"json.dump(out, open(\"./data/tmp/timeline_example_1.json\", 'w'))" |
|
|
1582 |
] |
|
|
1583 |
}, |
|
|
1584 |
{ |
|
|
1585 |
"cell_type": "code", |
|
|
1586 |
"execution_count": null, |
|
|
1587 |
"id": "da6e079d", |
|
|
1588 |
"metadata": {}, |
|
|
1589 |
"outputs": [], |
|
|
1590 |
"source": [ |
|
|
1591 |
"len(out)" |
|
|
1592 |
] |
|
|
1593 |
}, |
|
|
1594 |
{ |
|
|
1595 |
"cell_type": "code", |
|
|
1596 |
"execution_count": null, |
|
|
1597 |
"id": "e2730480", |
|
|
1598 |
"metadata": {}, |
|
|
1599 |
"outputs": [], |
|
|
1600 |
"source": [ |
|
|
1601 |
"out" |
|
|
1602 |
] |
|
|
1603 |
} |
|
|
1604 |
], |
|
|
1605 |
"metadata": { |
|
|
1606 |
"kernelspec": { |
|
|
1607 |
"display_name": "Python 3 (ipykernel)", |
|
|
1608 |
"language": "python", |
|
|
1609 |
"name": "python3" |
|
|
1610 |
}, |
|
|
1611 |
"language_info": { |
|
|
1612 |
"codemirror_mode": { |
|
|
1613 |
"name": "ipython", |
|
|
1614 |
"version": 3 |
|
|
1615 |
}, |
|
|
1616 |
"file_extension": ".py", |
|
|
1617 |
"mimetype": "text/x-python", |
|
|
1618 |
"name": "python", |
|
|
1619 |
"nbconvert_exporter": "python", |
|
|
1620 |
"pygments_lexer": "ipython3", |
|
|
1621 |
"version": "3.8.0" |
|
|
1622 |
} |
|
|
1623 |
}, |
|
|
1624 |
"nbformat": 4, |
|
|
1625 |
"nbformat_minor": 5 |
|
|
1626 |
} |