[248dc9]: / lit_gpt / tokenizer.py

Download this file

108 lines (93 with data), 4.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
import json
from pathlib import Path
from typing import Optional, Union
import torch
class Tokenizer:
def __init__(self, checkpoint_dir: Union[Path, str]) -> None:
checkpoint_dir = Path(checkpoint_dir)
if not checkpoint_dir.exists():
raise NotADirectoryError(f"The checkpoint directory does not exist: {str(checkpoint_dir)}")
self.use_bos = self.check_if_bos_token_used(checkpoint_dir)
self.bos_id = None
self.eos_id = None
# some checkpoints have both files, `.model` takes precedence
if (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file():
from sentencepiece import SentencePieceProcessor
self.processor = SentencePieceProcessor(model_file=str(vocabulary_path))
self.backend = "sentencepiece"
self.bos_id = self.processor.bos_id()
self.eos_id = self.processor.eos_id()
elif (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file():
from tokenizers import Tokenizer as HFTokenizer
self.processor = HFTokenizer.from_file(str(vocabulary_path))
self.backend = "huggingface"
if (special_tokens_path := checkpoint_dir / "tokenizer_config.json").is_file():
with open(special_tokens_path) as fp:
config = json.load(fp)
bos_token = config.get("bos_token")
self.bos_id = self.token_to_id(bos_token) if bos_token is not None else None
eos_token = config.get("eos_token")
self.eos_id = self.token_to_id(eos_token) if eos_token is not None else None
if (special_tokens_path := checkpoint_dir / "generation_config.json").is_file():
with open(special_tokens_path) as fp:
config = json.load(fp)
if self.bos_id is None:
self.bos_id = config.get("bos_token_id")
if self.eos_id is None:
self.eos_id = config.get("eos_token_id")
else:
raise NotImplementedError
@property
def vocab_size(self) -> int:
if self.backend == "huggingface":
return self.processor.get_vocab_size(with_added_tokens=False)
if self.backend == "sentencepiece":
return self.processor.vocab_size()
raise RuntimeError
def token_to_id(self, token: str) -> int:
if self.backend == "huggingface":
id_ = self.processor.token_to_id(token)
elif self.backend == "sentencepiece":
id_ = self.processor.piece_to_id(token)
else:
raise RuntimeError
if id_ is None:
raise ValueError(f"token {token!r} not found in the collection.")
return id_
def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool:
if not (tokenizer_config_path := checkpoint_dir / "tokenizer_config.json").is_file():
return False
with open(tokenizer_config_path) as fp:
config = json.load(fp)
if any(config.get(check, False) for check in ("add_bos_token", "add_prefix_space")):
return True
# for examples that also use the Llama tokenizer, but do not have or set add_bos_token to True.
# ex: https://huggingface.co/stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2
return config.get("add_bos_token") is None and config.get("tokenizer_class") == "LlamaTokenizer"
def encode(
self,
string: str,
device: Optional[torch.device] = None,
bos: Optional[bool] = None,
eos: bool = False,
max_length: int = -1,
) -> torch.Tensor:
if self.backend == "huggingface":
tokens = self.processor.encode(string).ids
elif self.backend == "sentencepiece":
tokens = self.processor.encode(string)
else:
raise RuntimeError
if bos or (bos is None and self.use_bos):
bos_id = self.bos_id
if bos_id is None:
raise NotImplementedError("This tokenizer does not have a defined a bos token")
tokens = [bos_id] + tokens
if eos:
tokens = tokens + [self.eos_id]
if max_length > 0:
tokens = tokens[:max_length]
return torch.tensor(tokens, dtype=torch.int, device=device)
def decode(self, tensor: torch.Tensor) -> str:
tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist()
return self.processor.decode(tokens)