# This script is used to generate predictions using the fine-tuned adapter models
# This script is modified from the original script provided by the LIT team: https://github.com/Lightning-AI/lit-gpt
## Usage:
# python generate/inference_adapter.py --model-type "stablelm" --input-file "..data/entity_extraction/entity-extraction-test-data.json"
# python generate/inference_adapter.py --model-type "llama2" --input-file "..data/entity_extraction/entity-extraction-test-data.json"
import argparse
import json
import sys
import time
from pathlib import Path
from typing import Literal, Optional
import lightning as L
import torch
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy
import os
## Add the lit_gpt folder to the path
sys.path.insert(0, os.path.abspath('../'))
from base import generate
from lit_gpt import Tokenizer
from lit_gpt.adapter_v2 import GPT, Block, Config
from lit_gpt.utils import check_valid_checkpoint_dir, get_default_supported_precision, gptq_quantization, lazy_load
from scripts.prepare_entity_extraction_data import generate_prompt
def generate_prediction(model_type, sample):
"""
This function is used to generate predictions using the fine-tuned adapter models. It loads the model
and generates and prints a sample prediction. Further, it generates predictions for all the samples
in the test data and stores the predictions in a file.
Args:
model_type (str): The type of model to use for prediction
sample (dict): The sample for which the prediction is to be generated
Returns:
None
"""
# Check which model to use for prediction
if model_type == "stablelm":
print("[INFO] Using StableLM-3B Adapter Fine-tuned")
adapter_path: Path = Path("out/adapter_v2/Stable-LM/entity_extraction/lit_model_adapter_finetuned.pth")
checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b")
predictions_file_name = 'data/predictions-stablelm-adapter.json'
if model_type == "llama2":
print("[INFO] Using LLaMa-2-7B Adapter Fine-tuned")
adapter_path: Path = Path("out/adapter_v2/Llama-2/entity_extraction/lit_model_adapter_finetuned.pth")
checkpoint_dir: Path = Path("checkpoints/meta-llama/Llama-2-7b-hf")
predictions_file_name = 'data/predictions-llama2-adapter.json'
# Set the model parameters
quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]] = None
max_new_tokens: int = 100
top_k: int = 200
temperature: float = 0.1
strategy: str = "auto"
devices: int = 1
precision: Optional[str] = None
# Set the strategy
if strategy == "fsdp":
strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy)
fabric.launch()
# Check if the checkpoint directory is valid and load the model configuration
check_valid_checkpoint_dir(checkpoint_dir)
config = Config.from_json(checkpoint_dir / "lit_config.json")
# Check if the quantization is required
if quantize is not None and devices > 1:
raise NotImplementedError
if quantize == "gptq.int4":
model_file = "lit_model_gptq.4bit.pth"
if not (checkpoint_dir / model_file).is_file():
raise ValueError("Please run `python quantize/gptq.py` first")
else:
model_file = "lit_model.pth"
# Load the model from the checkpoint
checkpoint_path = checkpoint_dir / model_file
# Load the tokenizer
tokenizer = Tokenizer(checkpoint_dir)
# Generate the prompt from the given sample and encode it
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, device=fabric.device)
# Set the max sequence length
prompt_length = encoded.size(0)
max_returned_tokens = prompt_length + max_new_tokens
# Load the model configuration
fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}", file=sys.stderr)
t0 = time.perf_counter()
with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
model = GPT(config)
fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
with fabric.init_tensor():
# set the max_seq_length to limit the memory usage to what we need
model.max_seq_length = max_returned_tokens
# enable the kv cache
model.set_kv_cache(batch_size=1)
model.eval()
# Load the model weights and setup the adapter
t0 = time.perf_counter()
checkpoint = lazy_load(checkpoint_path)
adapter_checkpoint = lazy_load(adapter_path)
checkpoint.update(adapter_checkpoint.get("model", adapter_checkpoint))
model.load_state_dict(checkpoint)
fabric.print(f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
model = fabric.setup(model)
# Set the seed and generate the prediction
L.seed_everything(1234)
t0 = time.perf_counter()
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id)
t = time.perf_counter() - t0
# Process the predicted completion
output = tokenizer.decode(y)
output = output.split("### Response:")[1].strip()
fabric.print(output)
tokens_generated = y.size(0) - prompt_length
fabric.print(f"\n\nTime for inference: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr)
if fabric.device.type == "cuda":
fabric.print(f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr)
# Generate predictions for all the samples in the test data
test_data_with_prediction = []
for sample in test_data:
# Generate prompt from sample
prompt = generate_prompt(sample)
fabric.print(prompt)
# Encode the prompt
encoded = tokenizer.encode(prompt, device=fabric.device)
# Generate the prediction from the LLM
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id)
output = tokenizer.decode(y)
# Process the predicted completion
output = output.split("### Response:")[1].strip()
# Store prediction along with input and ground truth
sample['prediction'] = output
test_data_with_prediction.append(sample)
fabric.print(output)
fabric.print("---------------------------------------------------------\n\n")
# Write the predictions data to a file
with open(predictions_file_name, 'w') as file:
json.dump(test_data_with_prediction, file, indent=4)
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
# Parse the arguments
parser = argparse.ArgumentParser(description="Entity Extraction Script")
parser.add_argument('--input-file', type=str, default='data/entity_extraction/entity-extraction-test-data.json', help="Path to the test JSON file")
parser.add_argument('--model-type', type=str, choices=['stablelm', 'llama2'], default='stablelm', help="Type of model to use (stablelm or llama2)")
args = parser.parse_args()
# Load the test data
with open(args.input_file, 'r') as file:
test_data = json.load(file)
# Single Sample
sample = {
"input": "Natalie Cooper,\nncooper@example.com\n6789 Birch Street, Denver, CO 80203,\n303-555-6543, United States\n\nRelationship to XYZ Pharma Inc.: Patient\nReason for contacting: Adverse Event\n\nMessage: Hi, after starting Abilify for bipolar I disorder, I've noticed that I am experiencing nausea and vomiting. Are these typical reactions? Best, Natalie Cooper",
"output": "{\"drug_name\": \"Abilify\", \"adverse_events\": [\"nausea\", \"vomiting\"]}"
}
generate_prediction(model_type=args.model_type, sample=sample)