## This script is adapted from: https://github.com/Lightning-AI/lit-gpt
## This script is used to convert the HF checkpoint to the LIT checkpoint
import gc
import json
import sys
from dataclasses import asdict
from functools import partial
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import torch
from lightning.fabric.utilities.load import _NotYetLoadedTensor as NotYetLoadedTensor
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from lit_gpt import Config
from lit_gpt.utils import incremental_save, lazy_load
def copy_weights_gpt_neox(
state_dict: Dict[str, torch.Tensor],
hf_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
weight_map = {
"gpt_neox.embed_in.weight": "transformer.wte.weight",
"gpt_neox.layers.{}.input_layernorm.bias": "transformer.h.{}.norm_1.bias",
"gpt_neox.layers.{}.input_layernorm.weight": "transformer.h.{}.norm_1.weight",
"gpt_neox.layers.{}.attention.query_key_value.bias": "transformer.h.{}.attn.attn.bias",
"gpt_neox.layers.{}.attention.query_key_value.weight": "transformer.h.{}.attn.attn.weight",
"gpt_neox.layers.{}.attention.dense.bias": "transformer.h.{}.attn.proj.bias",
"gpt_neox.layers.{}.attention.dense.weight": "transformer.h.{}.attn.proj.weight",
"gpt_neox.layers.{}.attention.rotary_emb.inv_freq": None,
"gpt_neox.layers.{}.attention.bias": None,
"gpt_neox.layers.{}.attention.masked_bias": None,
"gpt_neox.layers.{}.post_attention_layernorm.bias": "transformer.h.{}.norm_2.bias",
"gpt_neox.layers.{}.post_attention_layernorm.weight": "transformer.h.{}.norm_2.weight",
"gpt_neox.layers.{}.mlp.dense_h_to_4h.bias": "transformer.h.{}.mlp.fc.bias",
"gpt_neox.layers.{}.mlp.dense_h_to_4h.weight": "transformer.h.{}.mlp.fc.weight",
"gpt_neox.layers.{}.mlp.dense_4h_to_h.bias": "transformer.h.{}.mlp.proj.bias",
"gpt_neox.layers.{}.mlp.dense_4h_to_h.weight": "transformer.h.{}.mlp.proj.weight",
"gpt_neox.final_layer_norm.bias": "transformer.ln_f.bias",
"gpt_neox.final_layer_norm.weight": "transformer.ln_f.weight",
"embed_out.weight": "lm_head.weight",
}
for name, param in hf_weights.items():
if "gpt_neox.layers" in name:
from_name, number = layer_template(name, 2)
to_name = weight_map[from_name]
if to_name is None:
continue
to_name = to_name.format(number)
else:
to_name = weight_map[name]
param = load_param(param, name, dtype)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_falcon(
model_name: str,
state_dict: Dict[str, torch.Tensor],
hf_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
weight_map = {
"transformer.word_embeddings.weight": "transformer.wte.weight",
"transformer.h.{}.self_attention.query_key_value.weight": "transformer.h.{}.attn.attn.weight",
"transformer.h.{}.self_attention.dense.weight": "transformer.h.{}.attn.proj.weight",
"transformer.h.{}.mlp.dense_h_to_4h.weight": "transformer.h.{}.mlp.fc.weight",
"transformer.h.{}.mlp.dense_4h_to_h.weight": "transformer.h.{}.mlp.proj.weight",
"transformer.ln_f.bias": "transformer.ln_f.bias",
"transformer.ln_f.weight": "transformer.ln_f.weight",
"lm_head.weight": "lm_head.weight",
}
# the original model definition is different for each size
if "7b" in model_name:
weight_map.update(
{
"transformer.h.{}.input_layernorm.bias": "transformer.h.{}.norm_1.bias",
"transformer.h.{}.input_layernorm.weight": "transformer.h.{}.norm_1.weight",
}
)
elif "40b" in model_name or "180B" in model_name:
weight_map.update(
{
"transformer.h.{}.ln_attn.bias": "transformer.h.{}.norm_1.bias",
"transformer.h.{}.ln_attn.weight": "transformer.h.{}.norm_1.weight",
"transformer.h.{}.ln_mlp.bias": "transformer.h.{}.norm_2.bias",
"transformer.h.{}.ln_mlp.weight": "transformer.h.{}.norm_2.weight",
}
)
else:
raise NotImplementedError
for name, param in hf_weights.items():
if "transformer.h" in name:
from_name, number = layer_template(name, 2)
to_name = weight_map[from_name].format(number)
else:
to_name = weight_map[name]
param = load_param(param, name, dtype)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_hf_llama(
config: Config,
qkv_weights: Dict[int, List[Optional[NotYetLoadedTensor]]],
state_dict: Dict[str, torch.Tensor],
hf_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
weight_map = {
"model.embed_tokens.weight": "transformer.wte.weight",
"model.layers.{}.input_layernorm.weight": "transformer.h.{}.norm_1.weight",
"model.layers.{}.self_attn.q_proj.weight": None,
"model.layers.{}.self_attn.k_proj.weight": None,
"model.layers.{}.self_attn.v_proj.weight": None,
"model.layers.{}.self_attn.o_proj.weight": "transformer.h.{}.attn.proj.weight",
"model.layers.{}.self_attn.rotary_emb.inv_freq": None,
"model.layers.{}.post_attention_layernorm.weight": "transformer.h.{}.norm_2.weight",
"model.layers.{}.mlp.gate_proj.weight": "transformer.h.{}.mlp.fc_1.weight",
"model.layers.{}.mlp.up_proj.weight": "transformer.h.{}.mlp.fc_2.weight",
"model.layers.{}.mlp.down_proj.weight": "transformer.h.{}.mlp.proj.weight",
"model.norm.weight": "transformer.ln_f.weight",
"lm_head.weight": "lm_head.weight",
}
for name, param in hf_weights.items():
if "model.layers" in name:
from_name, number = layer_template(name, 2)
qkv = qkv_weights.setdefault(number, [None, None, None])
if "q_proj" in name:
qkv[0] = param
elif "k_proj" in name:
qkv[1] = param
elif "v_proj" in name:
qkv[2] = param
to_name = weight_map[from_name]
if to_name is None:
continue
to_name = to_name.format(number)
else:
to_name = weight_map[name]
param = load_param(param, name, dtype)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
for i, (q, k, v) in list(qkv_weights.items()):
if q is None or k is None or v is None:
# split across different .bin files
continue
q = load_param(q, f"layer {i} q", dtype)
k = load_param(k, f"layer {i} k", dtype)
v = load_param(v, f"layer {i} v", dtype)
q_per_kv = config.n_head // config.n_query_groups
qs = torch.split(q, config.head_size * q_per_kv)
ks = torch.split(k, config.head_size)
vs = torch.split(v, config.head_size)
cycled = [t for group in zip(qs, ks, vs) for t in group]
qkv = torch.cat(cycled)
state_dict[f"transformer.h.{i}.attn.attn.weight"] = qkv
del qkv_weights[i]
def copy_weights_phi(
config: Config,
state_dict: Dict[str, torch.Tensor],
hf_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
if any(layer_name.startswith("layers.") for layer_name in hf_weights):
raise ValueError(
"You are using an outdated Phi1.5 checkpoint. "
"Please reload it as described in 'tutorials/download_phi15.md'"
)
weight_map = {
"transformer.embd.wte.weight": "transformer.wte.weight",
"transformer.h.{}.ln.bias": "transformer.h.{}.norm_1.bias",
"transformer.h.{}.ln.weight": "transformer.h.{}.norm_1.weight",
"transformer.h.{}.mixer.Wqkv.bias": "transformer.h.{}.attn.attn.bias",
"transformer.h.{}.mixer.Wqkv.weight": "transformer.h.{}.attn.attn.weight",
"transformer.h.{}.mixer.out_proj.bias": "transformer.h.{}.attn.proj.bias",
"transformer.h.{}.mixer.out_proj.weight": "transformer.h.{}.attn.proj.weight",
"transformer.h.{}.mixer.rotary_emb.inv_freq": None,
"transformer.h.{}.mlp.fc1.bias": "transformer.h.{}.mlp.fc.bias",
"transformer.h.{}.mlp.fc1.weight": "transformer.h.{}.mlp.fc.weight",
"transformer.h.{}.mlp.fc2.bias": "transformer.h.{}.mlp.proj.bias",
"transformer.h.{}.mlp.fc2.weight": "transformer.h.{}.mlp.proj.weight",
"lm_head.ln.weight": "transformer.ln_f.weight",
"lm_head.ln.bias": "transformer.ln_f.bias",
"lm_head.linear.weight": "lm_head.weight",
"lm_head.linear.bias": "lm_head.bias",
}
for name, param in hf_weights.items():
if name.startswith("transformer.h."):
from_name, number = layer_template(name, 2)
to_name = weight_map[from_name].format(number)
else:
to_name = weight_map[name]
param = load_param(param, name, dtype)
if "Wqkv" in name:
q_per_kv = config.n_head // config.n_query_groups
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
param = param.view(total_qkv, config.n_query_groups, -1).transpose(0, 1)
param = param.reshape(config.n_embd * 3, -1)
if "bias" in name:
param = param.squeeze()
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def layer_template(layer_name: str, idx: int) -> Tuple[str, int]:
split = layer_name.split(".")
number = int(split[idx])
split[idx] = "{}"
from_name = ".".join(split)
return from_name, number
def load_param(param: Union[torch.Tensor, NotYetLoadedTensor], name: str, dtype: Optional[torch.dtype]) -> torch.Tensor:
if hasattr(param, "_load_tensor"):
# support tensors loaded via `lazy_load()`
print(f"Loading {name!r} into RAM")
param = param._load_tensor()
if dtype is not None and type(dtype) is not NotYetLoadedTensor and dtype != param.dtype:
print(f"Converting {name!r} from {param.dtype} to {dtype}")
param = param.to(dtype)
return param
@torch.inference_mode()
def convert_hf_checkpoint(
*,
checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b"),
model_name: Optional[str] = None,
dtype: Optional[str] = None,
) -> None:
if model_name is None:
model_name = checkpoint_dir.name
if dtype is not None:
dtype = getattr(torch, dtype)
config = Config.from_name(model_name)
config_dict = asdict(config)
print(f"Model config {config_dict}")
with open(checkpoint_dir / "lit_config.json", "w") as json_config:
json.dump(config_dict, json_config)
if "falcon" in model_name:
copy_fn = partial(copy_weights_falcon, model_name)
elif config._mlp_class == "LLaMAMLP":
# holder to reconstitute the split q, k, v
qkv_weights = {}
copy_fn = partial(copy_weights_hf_llama, config, qkv_weights)
elif "phi" in model_name:
copy_fn = partial(copy_weights_phi, config)
else:
copy_fn = copy_weights_gpt_neox
# initialize a new empty state dict to hold our new weights
sd = {}
# Load the json file containing weight mapping
pytorch_bin_map_json_path = checkpoint_dir / "pytorch_model.bin.index.json"
if pytorch_bin_map_json_path.is_file(): # not all checkpoints have this file
with open(pytorch_bin_map_json_path) as json_map:
bin_index = json.load(json_map)
bin_files = {checkpoint_dir / bin for bin in bin_index["weight_map"].values()}
else:
bin_files = set(checkpoint_dir.glob("*.bin"))
# some checkpoints serialize the training arguments
bin_files = {f for f in bin_files if f.name != "training_args.bin"}
if not bin_files:
raise ValueError(f"Expected {str(checkpoint_dir)!r} to contain .bin files")
with incremental_save(checkpoint_dir / "lit_model.pth") as saver:
# for checkpoints that split the QKV across several files, we need to keep all the bin files
# open, so we use `ExitStack` to close them all together at the end
for bin_file in sorted(bin_files):
print("Processing", bin_file)
hf_weights = lazy_load(bin_file)
copy_fn(sd, hf_weights, saver=saver, dtype=dtype)
gc.collect()
print("Saving converted checkpoint")
saver.save(sd)
if __name__ == "__main__":
from jsonargparse import CLI
CLI(convert_hf_checkpoint)