import os
import json
import random
def genrate_train_test_data(folder_path = 'data/entity_extraction_reports/'):
"""
Generate train and test data from the JSON files in the given folder path.
Args:
folder_path (str): Path to the folder containing JSON files.
Returns:
None
"""
# Create the folder if it doesn't exist
if not os.path.exists("data/entity_extraction"):
os.makedirs("data/entity_extraction")
# Initialize an empty list to store JSON objects
json_objects = []
# Loop through each file in the folder
for filename in os.listdir(folder_path):
# Check if the file is a text file
if filename.endswith('.txt'):
print(f"[INFO] Processing file: {filename}")
# Read the file and load the JSON object
file_path = os.path.join(folder_path, filename)
with open(file_path, 'r') as file:
try:
json_object = json.loads(file.read())
# Convert the 'output' field from a JSON object to a JSON string
for item in json_object:
item['output'] = json.dumps(item['output'])
json_objects.extend(json_object)
except json.JSONDecodeError:
print(f"Error reading file: {file_path}")
# Shuffle the JSON objects
random.shuffle(json_objects)
# Split the data into train and test
train_data = json_objects[:700] # First 700 objects for training
test_data = json_objects[700:] # Last 59 objects for testing
# Write the train data to a file
with open('data/entity_extraction/entity-extraction-train-data.json', 'w') as file:
json.dump(train_data, file, indent=4)
# Write the test data to a file
with open('data/entity_extraction/entity-extraction-test-data.json', 'w') as file:
json.dump(test_data, file, indent=4)
if __name__ == '__main__':
# Replace 'folder_path' with the actual path to your folder containing text files
folder_path = 'data/entity_extraction_reports/'
# Call the function
genrate_train_test_data(folder_path)