|
a |
|
b/notebooks/evaluate.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 18, |
|
|
6 |
"id": "21d5a4b0-d594-48c3-ad3e-57f1f1b5c29d", |
|
|
7 |
"metadata": {}, |
|
|
8 |
"outputs": [], |
|
|
9 |
"source": [ |
|
|
10 |
"import json" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "code", |
|
|
15 |
"execution_count": 19, |
|
|
16 |
"id": "75b28dce-720a-454a-a130-17c391b20c70", |
|
|
17 |
"metadata": {}, |
|
|
18 |
"outputs": [], |
|
|
19 |
"source": [ |
|
|
20 |
"def parse_entities(record, key):\n", |
|
|
21 |
" \"\"\"\n", |
|
|
22 |
" Parse entities from a record in the data.\n", |
|
|
23 |
" \n", |
|
|
24 |
" Args:\n", |
|
|
25 |
" - record: A dictionary representing a single record in the data.\n", |
|
|
26 |
" - key: The key to extract data from ('output' or 'prediction').\n", |
|
|
27 |
"\n", |
|
|
28 |
" Returns:\n", |
|
|
29 |
" - A set containing the extracted entities.\n", |
|
|
30 |
" \"\"\"\n", |
|
|
31 |
" # Convert the string into a dictionary\n", |
|
|
32 |
" entities = json.loads(record[key])\n", |
|
|
33 |
" \n", |
|
|
34 |
" # Initialize a set to store the entities\n", |
|
|
35 |
" flattened_entities = set()\n", |
|
|
36 |
" \n", |
|
|
37 |
" # Extract the entities\n", |
|
|
38 |
" for value in entities.values():\n", |
|
|
39 |
" # Check if item is a list of adverse events\n", |
|
|
40 |
" if isinstance(value, list):\n", |
|
|
41 |
" flattened_entities.update(value)\n", |
|
|
42 |
" # Parse drug names\n", |
|
|
43 |
" else:\n", |
|
|
44 |
" flattened_entities.add(value)\n", |
|
|
45 |
" \n", |
|
|
46 |
" return flattened_entities" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"execution_count": 20, |
|
|
52 |
"id": "be48635c-7e26-488e-a2bc-0da52e08e752", |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [], |
|
|
55 |
"source": [ |
|
|
56 |
"def calculate_precision_recall(data):\n", |
|
|
57 |
" \"\"\"\n", |
|
|
58 |
" Calculate precision and recall from the data.\n", |
|
|
59 |
"\n", |
|
|
60 |
" Args:\n", |
|
|
61 |
" - data: A list of dictionaries, each containing 'output' and 'prediction'.\n", |
|
|
62 |
"\n", |
|
|
63 |
" Returns:\n", |
|
|
64 |
" - precision: The precision of the predictions.\n", |
|
|
65 |
" - recall: The recall of the predictions.\n", |
|
|
66 |
" \"\"\"\n", |
|
|
67 |
" # Initialize variables\n", |
|
|
68 |
" true_positives = 0\n", |
|
|
69 |
" false_positives = 0\n", |
|
|
70 |
" false_negatives = 0\n", |
|
|
71 |
" \n", |
|
|
72 |
" # parse all the samples in the test dataset\n", |
|
|
73 |
" for record in data:\n", |
|
|
74 |
" # Extract ground truths\n", |
|
|
75 |
" gt_entities = parse_entities(record, 'output')\n", |
|
|
76 |
" # Extract predictions\n", |
|
|
77 |
" pred_entities = parse_entities(record, 'prediction')\n", |
|
|
78 |
" \n", |
|
|
79 |
" # Calculate TP, FP, FN for each sample in test data\n", |
|
|
80 |
" true_positives += len(gt_entities & pred_entities)\n", |
|
|
81 |
" false_positives += len(pred_entities - gt_entities)\n", |
|
|
82 |
" false_negatives += len(gt_entities - pred_entities)\n", |
|
|
83 |
" \n", |
|
|
84 |
" # Calculate Precision\n", |
|
|
85 |
" precision = true_positives / (true_positives + false_positives) if true_positives + false_positives > 0 else 0\n", |
|
|
86 |
" # Calculate Recall\n", |
|
|
87 |
" recall = true_positives / (true_positives + false_negatives) if true_positives + false_negatives > 0 else 0\n", |
|
|
88 |
"\n", |
|
|
89 |
" return precision, recall" |
|
|
90 |
] |
|
|
91 |
}, |
|
|
92 |
{ |
|
|
93 |
"cell_type": "code", |
|
|
94 |
"execution_count": 23, |
|
|
95 |
"id": "a16f2c86-2cff-4c4f-893d-60a9f06023b8", |
|
|
96 |
"metadata": {}, |
|
|
97 |
"outputs": [], |
|
|
98 |
"source": [ |
|
|
99 |
"prediction_files = [\n", |
|
|
100 |
" './data/predictions-llama2-adapter.json', # Llama-2 Adapter\n", |
|
|
101 |
" './data/predictions-stablelm-adapter.json', # Stable-LM Adapter\n", |
|
|
102 |
" './data/predictions-llama2-lora.json', # Llama-2 Lora\n", |
|
|
103 |
" './data/predictions-stablelm-lora.json', # Stable-LM Lora\n", |
|
|
104 |
" ]" |
|
|
105 |
] |
|
|
106 |
}, |
|
|
107 |
{ |
|
|
108 |
"cell_type": "code", |
|
|
109 |
"execution_count": 26, |
|
|
110 |
"id": "c95cb283-e1ac-45f5-aee3-b29fd932aba5", |
|
|
111 |
"metadata": {}, |
|
|
112 |
"outputs": [ |
|
|
113 |
{ |
|
|
114 |
"name": "stdout", |
|
|
115 |
"output_type": "stream", |
|
|
116 |
"text": [ |
|
|
117 |
"[INFO] llama2-adapter ----> Precision: 0.886 Recall: 0.891\n", |
|
|
118 |
"[INFO] stablelm-adapter ----> Precision: 0.854 Recall: 0.839\n", |
|
|
119 |
"[INFO] llama2-lora ----> Precision: 0.871 Recall: 0.851\n", |
|
|
120 |
"[INFO] stablelm-lora ----> Precision: 0.818 Recall: 0.828\n" |
|
|
121 |
] |
|
|
122 |
} |
|
|
123 |
], |
|
|
124 |
"source": [ |
|
|
125 |
"for filename in prediction_files:\n", |
|
|
126 |
" # Get model name and tune type\n", |
|
|
127 |
" file_components = filename.split('-')\n", |
|
|
128 |
" \n", |
|
|
129 |
" # Load the predcitions JSON data\n", |
|
|
130 |
" with open(filename, 'r') as file:\n", |
|
|
131 |
" data = json.load(file)\n", |
|
|
132 |
"\n", |
|
|
133 |
" precision, recall = calculate_precision_recall(data)\n", |
|
|
134 |
" print(f\"[INFO] {file_components[1]}-{file_components[2].split('.')[0]} ----> Precision: {round(precision,3)} Recall: {round(recall,3)}\")" |
|
|
135 |
] |
|
|
136 |
}, |
|
|
137 |
{ |
|
|
138 |
"cell_type": "code", |
|
|
139 |
"execution_count": null, |
|
|
140 |
"id": "7ff32790-3e03-464e-bd03-4cb29a244f37", |
|
|
141 |
"metadata": {}, |
|
|
142 |
"outputs": [], |
|
|
143 |
"source": [] |
|
|
144 |
} |
|
|
145 |
], |
|
|
146 |
"metadata": { |
|
|
147 |
"kernelspec": { |
|
|
148 |
"display_name": "scrape", |
|
|
149 |
"language": "python", |
|
|
150 |
"name": "python3" |
|
|
151 |
}, |
|
|
152 |
"language_info": { |
|
|
153 |
"codemirror_mode": { |
|
|
154 |
"name": "ipython", |
|
|
155 |
"version": 3 |
|
|
156 |
}, |
|
|
157 |
"file_extension": ".py", |
|
|
158 |
"mimetype": "text/x-python", |
|
|
159 |
"name": "python", |
|
|
160 |
"nbconvert_exporter": "python", |
|
|
161 |
"pygments_lexer": "ipython3", |
|
|
162 |
"version": "3.10.13" |
|
|
163 |
} |
|
|
164 |
}, |
|
|
165 |
"nbformat": 4, |
|
|
166 |
"nbformat_minor": 5 |
|
|
167 |
} |