--- a +++ b/lit_gpt/adapter_v2.py @@ -0,0 +1,197 @@ +"""Implementation of the paper: + +LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model +https://arxiv.org/abs/2304.15010 + +Port for Lit-GPT +""" +from dataclasses import dataclass +from typing import Any, Dict, Optional, Tuple, Type + +import torch +import torch.nn as nn +from typing_extensions import Self + +import lit_gpt +from lit_gpt.adapter import GPT as BaseModel +from lit_gpt.adapter import Block as BaseBlock +from lit_gpt.adapter import CausalSelfAttention as BaseCausalSelfAttention +from lit_gpt.adapter import Config as BaseConfig +from lit_gpt.model import KVCache +from lit_gpt.utils import map_old_state_dict_weights + + +@dataclass +class Config(BaseConfig): + @property + def mlp_class(self) -> Type: + return getattr(lit_gpt.adapter_v2, self._mlp_class) + + +def adapter_filter(key: str, value: Any) -> bool: + adapter_substrings = ( + # regular adapter v1 parameters + "adapter_wte", + "gating_factor", + # adapter v2: new bias and scale used in Linear + "adapter_scale", + "adapter_bias", + # adapter v2: Norm parameters are now trainable + "norm_1", + "norm_2", + "ln_f", + ) + return any(s in key for s in adapter_substrings) + + +class AdapterV2Linear(torch.nn.Module): + def __init__(self, in_features: int, out_features: int, **kwargs) -> None: + super().__init__() + self.linear = torch.nn.Linear(in_features, out_features, **kwargs) + self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False) + self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.adapter_scale * (self.linear(x) + self.adapter_bias) + + def reset_parameters(self) -> None: + nn.init.zeros_(self.adapter_bias) + nn.init.ones_(self.adapter_scale) + + +class GPT(BaseModel): + def __init__(self, config: Config) -> None: + # Skip the parent class __init__ altogether and replace it to avoid useless allocations + nn.Module.__init__(self) + assert config.padded_vocab_size is not None + self.config = config + + self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias) + self.transformer = nn.ModuleDict( + dict( + wte=nn.Embedding(config.padded_vocab_size, config.n_embd), + h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)), + ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), + ) + ) + self.max_seq_length = self.config.block_size + self.mask_cache: Optional[torch.Tensor] = None + + @classmethod + def from_name(cls, name: str, **kwargs: Any) -> Self: + return cls(Config.from_name(name, **kwargs)) + + def _init_weights(self, module: nn.Module) -> None: + """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness.""" + super()._init_weights(module) + if isinstance(module, AdapterV2Linear): + module.reset_parameters() + + def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: + """For compatibility with base checkpoints.""" + mapping = {"lm_head.weight": "lm_head.linear.weight", "lm_head.bias": "lm_head.linear.bias"} + state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) + super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) + + +class Block(BaseBlock): + """The implementation is identical to `lit_gpt.model.Block` with the exception that + we replace the attention layer where adaption is implemented.""" + + def __init__(self, config: Config, block_idx: int) -> None: + # Skip the parent class __init__ altogether and replace it to avoid useless allocations + nn.Module.__init__(self) + self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps) + self.attn = CausalSelfAttention(config, block_idx) + if not config.shared_attention_norm: + self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps) + self.mlp = config.mlp_class(config) + + self.config = config + + +class CausalSelfAttention(BaseCausalSelfAttention): + """A modification of `lit_gpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class""" + + def __init__(self, config: Config, block_idx: int) -> None: + # Skip the parent class __init__ altogether and replace it to avoid useless allocations + nn.Module.__init__(self) + shape = (config.n_head + 2 * config.n_query_groups) * config.head_size + # key, query, value projections for all heads, but in a batch + self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias) + # output projection + self.proj = AdapterV2Linear(config.n_embd, config.n_embd, bias=config.bias) + # disabled by default + self.kv_cache: Optional[KVCache] = None + + if block_idx >= config.adapter_start_layer: + # adapter embedding layer + self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd) + # gate for adaption + self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1)) + # kv cache for inference + self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None + self.block_idx = block_idx + + self.config = config + + def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: + """For compatibility with base checkpoints.""" + mapping = { + "attn.weight": "attn.linear.weight", + "attn.bias": "attn.linear.bias", + "proj.weight": "proj.linear.weight", + "proj.bias": "proj.linear.bias", + } + state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) + # For compatibility with older checkpoints + if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head: + state_dict[key] = state_dict[key].permute(0, 2, 1, 3) + super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) + + +class GptNeoxMLP(lit_gpt.model.GptNeoxMLP): + def __init__(self, config: Config) -> None: + nn.Module.__init__(self) + self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias) + self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias) + + self.config = config + + def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: + """For compatibility with base checkpoints.""" + mapping = { + "fc.weight": "fc.linear.weight", + "fc.bias": "fc.linear.bias", + "proj.weight": "proj.linear.weight", + "proj.bias": "proj.linear.bias", + } + state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) + super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) + + +class LLaMAMLP(lit_gpt.model.LLaMAMLP): + def __init__(self, config: Config) -> None: + nn.Module.__init__(self) + self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias) + self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias) + self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias) + + def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: + """For compatibility with base checkpoints.""" + mapping = { + "fc_1.weight": "fc_1.linear.weight", + "fc_1.bias": "fc_1.linear.bias", + "fc_2.weight": "fc_2.linear.weight", + "fc_2.bias": "fc_2.linear.bias", + "proj.weight": "proj.linear.weight", + "proj.bias": "proj.linear.bias", + } + state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) + super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) + + +def mark_only_adapter_v2_as_trainable(model: GPT) -> None: + """Sets requires_grad=False for all non-adapter weights""" + for name, param in model.named_parameters(): + param.requires_grad = adapter_filter(name, param)