[248dc9]: / generate / inference_base.py

Download this file

255 lines (215 with data), 10.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# This script is used to generate predictions using the base models of StableLM and LLaMa-2
# This script is modified from the original script provided by the LIT team: https://github.com/Lightning-AI/lit-gpt
## Usage:
# python generate/inference_base.py --model-type "stablelm"
# python generate/inference_lora.py --model-type "llama2"
import argparse
import sys
import os
import time
from pathlib import Path
from typing import Any, Literal, Optional
import json
import lightning as L
import torch
import torch._dynamo.config
import torch._inductor.config
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
## Add the lit_gpt folder to the path
sys.path.insert(0, os.path.abspath('../'))
from lit_gpt import GPT, Config, Tokenizer
from lit_gpt.model import Block
from lit_gpt.utils import (
check_valid_checkpoint_dir,
get_default_supported_precision,
gptq_quantization,
load_checkpoint,
)
def multinomial_num_samples_1(probs: torch.Tensor) -> torch.Tensor:
"""
This function is derived from the original file provided by the LIT team:
Args:
probs: Tensor of shape (..., N) containing probabilities for N events.
Returns:
Tensor of shape (...) containing samples from the multinomial distribution.
"""
if torch._dynamo.is_compiling():
# Faster alternative to `torch.multinomial(probs, num_samples=1)` that is also CUDAGraph friendly
distribution = torch.empty_like(probs).exponential_(1)
return torch.argmax(probs / distribution, dim=-1, keepdim=True)
return torch.multinomial(probs, num_samples=1)
def sample(logits: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None) -> torch.Tensor:
"""
This function is derived from the original file provided by the LIT team:
Args:
logits: Tensor of shape (..., N) containing logits for N events.
temperature: Scales the logits by 1 / temperature.
top_k: If specified, only sample among the tokens with the k highest probabilities.
Returns:
Tensor of shape (...) containing samples from the multinomial distribution.
"""
logits = logits[0, -1]
# optionally crop the logits to only the top k options
if top_k is not None:
v, i = torch.topk(logits, min(top_k, logits.size(-1)))
# do not use `torch.where` as in nanogpt because it will repeat top-k collisions
logits = torch.full_like(logits, float("-inf")).scatter_(-1, i, v)
# optionally scale the logits and sample from a probability distribution
if temperature > 0.0:
probs = torch.nn.functional.softmax(logits / temperature, dim=-1)
return multinomial_num_samples_1(probs)
return torch.argmax(logits, dim=-1, keepdim=True)
def next_token(model: GPT, input_pos: torch.Tensor, x: torch.Tensor, **kwargs: Any) -> torch.Tensor:
"""
This function is derived from the original file provided by the LIT team:
Args:
model: The model to use.
input_pos: Tensor of shape (1) with the position of the last token in the input.
x: Tensor of shape (1, T) with the input sequence.
**kwargs: Keyword arguments passed to `sample`.
Returns:
Tensor of shape (1)
"""
logits = model(x, input_pos)
next = sample(logits, **kwargs)
return next.type_as(x)
@torch.inference_mode()
def generate(
model: GPT,
prompt: torch.Tensor,
max_returned_tokens: int,
*,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
prompt: Tensor of shape (T) with indices of the prompt sequence.
max_returned_tokens: The maximum number of tokens to return (given plus generated).
temperature: Scales the predicted logits by 1 / temperature.
top_k: If specified, only sample among the tokens with the k highest probabilities.
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
"""
T = prompt.size(0)
assert max_returned_tokens > T
if model.max_seq_length < max_returned_tokens - 1:
# rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
# data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
# not support it to avoid negatively impacting the overall speed
raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")
device = prompt.device
tokens = [prompt]
input_pos = torch.tensor([T], device=device)
token = next_token(
model, torch.arange(0, T, device=device), prompt.view(1, -1), temperature=temperature, top_k=top_k
).clone()
tokens.append(token)
for _ in range(2, max_returned_tokens - T + 1):
token = next_token(model, input_pos, token.view(1, -1), temperature=temperature, top_k=top_k).clone()
tokens.append(token)
if token == eos_id:
break
input_pos = input_pos.add_(1)
return torch.cat(tokens)
def generate_prediction(model_type, prompt):
"""
This function is used to generate predictions using the fine-tuned adapter models. It loads the model
and generates and prints a sample prediction. Further, it generates predictions for all the samples
in the test data and stores the predictions in a file.
Args:
model_type (str): The type of model to use for prediction
prompt (str): The prompt to use for prediction
Returns:
None
"""
# Set the model type and the paths
if model_type == "stablelm":
print("[INFO] Using StableLM-3B base model")
checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b")
if model_type == "llama2":
print("[INFO] Using Llama2-7B base model")
checkpoint_dir: Path = Path("checkpoints/meta-llama/Llama-2-7b-hf")
# Set the default arguments
predictions_file_name = 'data/predictions-stablelm-base.json'
quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]] = None
max_new_tokens: int = 50
top_k: int = 200
temperature: float = 0.1
strategy: str = "auto"
devices: int = 1
precision: Optional[str] = None
# Set the strategy
if strategy == "fsdp":
strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy)
fabric.launch()
# Check if the checkpoint directory is valid and load the model config
check_valid_checkpoint_dir(checkpoint_dir)
config = Config.from_json(checkpoint_dir / "lit_config.json")
# Check if the quantization is required
if quantize is not None and devices > 1:
raise NotImplementedError
if quantize == "gptq.int4":
model_file = "lit_model_gptq.4bit.pth"
if not (checkpoint_dir / model_file).is_file():
raise ValueError("Please run `python quantize/gptq.py` first")
else:
model_file = "lit_model.pth"
# Load the tokenizer and encode the prompt
checkpoint_path = checkpoint_dir / model_file
tokenizer = Tokenizer(checkpoint_dir)
encoded = tokenizer.encode(prompt, device=fabric.device)
prompt_length = encoded.size(0)
max_returned_tokens = prompt_length + max_new_tokens
# Load the model
fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}", file=sys.stderr)
t0 = time.perf_counter()
with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
model = GPT(config)
fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
with fabric.init_tensor():
# set the max_seq_length to limit the memory usage to what we need
model.max_seq_length = max_returned_tokens
# enable the kv cache
model.set_kv_cache(batch_size=1)
model.eval()
model = fabric.setup_module(model)
t0 = time.perf_counter()
load_checkpoint(fabric, model, checkpoint_path)
fabric.print(f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
# Set the seed and generate the predictions
L.seed_everything(1234)
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
for block in model.transformer.h:
block.attn.kv_cache.reset_parameters()
output = tokenizer.decode(y)
fabric.print(output)
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
# Parse the arguments
parser = argparse.ArgumentParser(description="Entity Extraction Script")
parser.add_argument('--model-type', type=str, choices=['stablelm', 'llama2'], default='stablelm', help="Type of model to use (stablelm or llama2)")
args = parser.parse_args()
# Single Sample
example = {
"input": "Natalie Cooper,\nncooper@example.com\n6789 Birch Street, Denver, CO 80203,\n303-555-6543, United States\n\nRelationship to XYZ Pharma Inc.: Patient\nReason for contacting: Adverse Event\n\nMessage: Hi, after starting Abilify for bipolar I disorder, I've noticed that I am experiencing nausea and vomiting. Are these typical reactions? Best, Natalie Cooper",
"output": "{\"drug_name\": \"Abilify\", \"adverse_events\": [\"nausea\", \"vomiting\"]}"
}
prompt = f"""Act as an expert Analyst with 20+ years of experience\
in Pharma and Healthcare industry. \
For the following provided input you need to generate the output which \
identifies and extracts entities like 'drug_name' and 'adverse_events' \
use the format:\n\
{{'drug_name':'DRUG_NAME_HERE', 'adverse_events':[## List of symptoms here]}}\n\
### Extract Entities from the follwing:\n\
{example["input"]}\
### Response:
"""
generate_prediction(model_type=args.model_type, prompt=prompt)