[6cf5c7]: / tools / tabtools.py

Download this file

221 lines (216 with data), 11.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pandas as pd
import jsonlines
import json
import re
import sqlite3
import sys
import Levenshtein
def db_loader(target_ehr):
ehr_dict = {"admissions":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/ADMISSIONS.csv",
"chartevents":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/CHARTEVENTS.csv",
"cost":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/COST.csv",
"d_icd_diagnoses":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/D_ICD_DIAGNOSES.csv",
"d_icd_procedures":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/D_ICD_PROCEDURES.csv",
"d_items":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/D_ITEMS.csv",
"d_labitems":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/D_LABITEMS.csv",
"diagnoses_icd":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/DIAGNOSES_ICD.csv",
"icustays":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/ICUSTAYS.csv",
"inputevents_cv":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/INPUTEVENTS_CV.csv",
"labevents":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/LABEVENTS.csv",
"microbiologyevents":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/MICROBIOLOGYEVENTS.csv",
"outputevents":"<YOUR_DATASET_PATH>/mimic_iii/OUTPUTEVENTS.csv",
"patients":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/PATIENTS.csv",
"prescriptions":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/PRESCRIPTIONS.csv",
"procedures_icd":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/PROCEDURES_ICD.csv",
"transfers":"<YOUR_DATASET_PATH>/ehrsql/mimic_iii/TRANSFERS.csv",
}
data = pd.read_csv(ehr_dict[target_ehr])
# data = data.astype(str)
column_names = ', '.join(data.columns.tolist())
return data
# def get_column_names(self, target_db):
# return ', '.join(data.columns.tolist())
def data_filter(data, argument):
# commands = re.sub(r' ', '', argument)
backup_data = data
# print('-->', argument)
commands = argument.split('||')
for i in range(len(commands)):
try:
# commands[i] = commands[i].replace(' ', '')
if '>=' in commands[i]:
command = commands[i].split('>=')
column_name = command[0]
value = command[1]
try:
value = type(data[column_name][0])(value)
except:
value = value
data = data[data[column_name] >= value]
elif '<=' in commands[i]:
command = commands[i].split('<=')
column_name = command[0]
value = command[1]
try:
value = type(data[column_name][0])(value)
except:
value = value
data = data[data[column_name] <= value]
elif '>' in commands[i]:
command = commands[i].split('>')
column_name = command[0]
value = command[1]
try:
value = type(data[column_name][0])(value)
except:
value = value
data = data[data[column_name] > value]
elif '<' in commands[i]:
command = commands[i].split('<')
column_name = command[0]
value = command[1]
if value[0] == "'" or value[0] == '"':
value = value[1:-1]
try:
value = type(data[column_name][0])(value)
except:
value = value
data = data[data[column_name] < value]
elif '=' in commands[i]:
command = commands[i].split('=')
column_name = command[0]
value = command[1]
# print(command)
# print(value)
if value[0] == "'" or value[0] == '"':
value = value[1:-1]
try:
examplar = backup_data[column_name].tolist()[0]
value = type(examplar)(value)
# print(value, type(value), type(examplar))
except:
value = value
# print('--', value, type(value), type(examplar))
# print('------', len(data))
data = data[data[column_name] == value]
# print('======', len(data))
elif ' in ' in commands[i]:
command = commands[i].split(' in ')
column_name = command[0]
value = command[1]
value_list = [s.strip() for s in value.strip("[]").split(',')]
value_list = [s.strip("'").strip('"') for s in value_list]
# print(command)
# print(column_name)
# print(value)
# print(value_list)
value_list = list(map(type(data[column_name][0]), value_list))
# print(len(data))
data = data[data[column_name].isin(value_list)]
# print(len(data))
elif 'max' in commands[i]:
command = commands[i].split('max(')
column_name = command[1].split(')')[0]
data = data[data[column_name] == data[column_name].max()]
elif 'min' in commands[i]:
command = commands[i].split('min(')
column_name = command[1].split(')')[0]
data = data[data[column_name] == data[column_name].min()]
except:
if column_name not in data.columns.tolist():
columns = ', '.join(data.columns.tolist())
raise Exception("The filtering query {} is incorrect. Please modify the column name or use LoadDB to read another table. The column names in the current DB are {}.".format(commands[i], columns))
if column_name == '' or value == '':
raise Exception("The filtering query {} is incorrect. There is syntax error in the command. Please modify the condition or use LoadDB to read another table.".format(commands[i]))
if len(data) == 0:
# get 5 examples from the backup data what is in the same column
column_values = list(set(backup_data[column_name].tolist()))
if ('=' in commands[i]) and (not value in column_values) and (not '>=' in commands[i]) and (not '<=' in commands[i]):
levenshtein_dist = {}
for cv in column_values:
levenshtein_dist[cv] = Levenshtein.distance(str(cv), str(value))
levenshtein_dist = sorted(levenshtein_dist.items(), key=lambda x: x[1], reverse=False)
column_values = [i[0] for i in levenshtein_dist[:5]]
column_values = ', '.join([str(i) for i in column_values])
raise Exception("The filtering query {} is incorrect. There is no {} value in the column. Five example values in the column are {}. Please check if you get the correct {} value.".format(commands[i], value, column_values, column_name))
else:
return data
return data
def get_value(data, argument):
try:
commands = argument.split(', ')
if len(commands) == 1:
column = argument
while column[0] == '[' or column[0] == "'":
column = column[1:]
while column[-1] == ']' or column[-1] == "'":
column = column[:-1]
if len(data) == 1:
return str(data.iloc[0][column])
else:
answer_list = list(set(data[column].tolist()))
answer_list = [str(i) for i in answer_list]
return ', '.join(answer_list)
# else:
# return "Get the value. But there are too many returned values. Please double-check the code and make necessary changes."
else:
column = commands[0]
if 'mean' in commands[-1]:
res_list = data[column].tolist()
res_list = [float(i) for i in res_list]
return sum(res_list)/len(res_list)
elif 'max' in commands[-1]:
res_list = data[column].tolist()
try:
res_list = [float(i) for i in res_list]
except:
res_list = [str(i) for i in res_list]
return max(res_list)
elif 'min' in commands[-1]:
res_list = data[column].tolist()
try:
res_list = [float(i) for i in res_list]
except:
res_list = [str(i) for i in res_list]
return min(res_list)
elif 'sum' in commands[-1]:
res_list = data[column].tolist()
res_list = [float(i) for i in res_list]
return sum(res_list)
elif 'list' in commands[-1]:
res_list = data[column].tolist()
res_list = [str(i) for i in res_list]
return list(res_list)
else:
raise Exception("The operation {} contains syntax errors. Please check the arguments.".format(commands[-1]))
except:
column_values = ', '.join(data.columns.tolist())
raise Exception("The column name {} is incorrect. Please check the column name and make necessary changes. The columns in this table include {}.".format(column, column_values))
def sql_interpreter(command):
con = sqlite3.connect("<YOUR_DATASET_PATH>/ehrsql/mimic_iii/mimic_iii.db")
cur = con.cursor()
results = cur.execute(command).fetchall()
return results
def date_calculator(argument):
try:
con = sqlite3.connect("<YOUR_DATASET_PATH>/ehrsql/mimic_iii/mimic_iii.db")
cur = con.cursor()
command = "select datetime(current_time, '{}')".format(argument)
results = cur.execute(command).fetchall()[0][0]
except:
raise Exception("The date calculator {} is incorrect. Please check the syntax and make necessary changes. For the current date and time, please call Calendar('0 year').".format(argument))
return results
if __name__ == "__main__":
db = table_toolkits()
print(db.db_loader("microbiologyevents"))
# print(db.data_filter("SPEC_TYPE_DESC=peripheral blood lymphocytes"))
print(db.data_filter("HADM_ID=107655"))
print(db.data_filter("SPEC_TYPE_DESC=peripheral blood lymphocytes"))
print(db.get_value('CHARTTIME'))
# results = db.sql_interpreter("select max(t1.c1) from ( select sum(cost.cost) as c1 from cost where cost.hadm_id in ( select diagnoses_icd.hadm_id from diagnoses_icd where diagnoses_icd.icd9_code = ( select d_icd_diagnoses.icd9_code from d_icd_diagnoses where d_icd_diagnoses.short_title = 'comp-oth vasc dev/graft' ) ) and datetime(cost.chargetime) >= datetime(current_time,'-1 year') group by cost.hadm_id ) as t1")
# results = [result[0] for result in results]
# if len(results) == 1:
# print(results[0])
# else:
# print(results)
# print(db.date_calculator('-1 year'))