import time
from typing import Dict, List, Optional, Union, Callable, Literal, Optional, Union
import logging
import asyncio
import openai
import json
from openai import OpenAI, AzureOpenAI
from autogen.agentchat import Agent, UserProxyAgent, ConversableAgent
from termcolor import colored
import Levenshtein
logger = logging.getLogger(__name__)
class MedAgent(UserProxyAgent):
def __init__(
self,
name: str,
is_termination_msg: Optional[Callable[[Dict], bool]] = None,
max_consecutive_auto_reply: Optional[int] = None,
human_input_mode: Optional[str] = "ALWAYS",
function_map: Optional[Dict[str, Callable]] = None,
code_execution_config: Optional[Union[Dict, Literal[False]]] = None,
default_auto_reply: Optional[Union[str, Dict, None]] = "",
llm_config: Optional[Union[Dict, Literal[False]]] = False,
system_message: Optional[Union[str, List]] = "",
config_list: Optional[List[Dict]] = None,
):
super().__init__(
name=name,
system_message=system_message,
is_termination_msg=is_termination_msg,
max_consecutive_auto_reply=max_consecutive_auto_reply,
human_input_mode=human_input_mode,
function_map=function_map,
code_execution_config=code_execution_config,
llm_config=llm_config,
default_auto_reply=default_auto_reply,
)
self.config_list = config_list
self.question = ''
self.code = ''
self.knowledge = ''
def retrieve_knowledge(self, config, query):
# import prompt
if self.dataset == 'mimic_iii':
from prompts_mimic import RetrKnowledge
else:
from prompts_eicu import RetrKnowledge
# Returns the related information to the given query.
patience = 2
sleep_time = 30
openai.api_type = config["api_type"]
openai.api_base = config["base_url"]
openai.api_version = config["api_version"]
openai.api_key = config["api_key"]
engine = config["model"]
query_message = RetrKnowledge.format(question=query)
messages = [{"role":"system","content":"You are an AI assistant that helps people find information."},
{"role":"user","content": query_message}]
client = AzureOpenAI(
api_key=config["api_key"],
azure_endpoint=config["base_url"],
api_version=config["api_version"],
)
while patience > 0:
patience -= 1
try:
response = client.chat.completions.create(
model=engine,
messages = messages,
temperature=0,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None)
prediction = response.choices[0].message.content.strip()
if prediction != "" and prediction != None:
return prediction
except Exception as e:
print(e)
if sleep_time > 0:
time.sleep(sleep_time)
return "Fail to retrieve related knowledge, please try again later."
def retrieve_examples(self, query):
levenshtein_dist = {}
for i in range(len(self.memory)):
question = self.memory[i]["question"]
levenshtein_dist[i] = Levenshtein.distance(query, question)
levenshtein_dist = sorted(levenshtein_dist.items(), key=lambda x: x[1], reverse=False)
selected_indexes = [levenshtein_dist[i][0] for i in range(min(self.num_shots, len(levenshtein_dist)))]
examples = []
for i in selected_indexes:
template = "Question: {}\nKnowledge:\n{}\nSolution:\n{}\n".format(self.memory[i]["question"], self.memory[i]["knowledge"], self.memory[i]["code"])
examples.append(template)
examples = '\n'.join(examples)
return examples
def generate_init_message(self, **context):
# import prompt
if self.dataset == 'mimic_iii':
from prompts_mimic import EHRAgent_Message_Prompt
else:
from prompts_eicu import EHRAgent_Message_Prompt
self.question = context["message"]
knowledge = self.retrieve_knowledge(self.config_list[0], context["message"])
self.knowledge = knowledge
examples = self.retrieve_examples(context["message"])
init_message = EHRAgent_Message_Prompt.format(examples=examples, knowledge=knowledge, question=context["message"])
return init_message
def send(self, message: Union[Dict, str], recipient: Agent, request_reply: Optional[bool]=None, silent: Optional[bool]=False):
valid = self._append_oai_message(message, "assistant", recipient)
if valid:
recipient.receive(message, self, request_reply, silent)
else:
raise ValueError(
"Message can't be converted into a valid ChatCompletion message. Either content or function_call must be provided."
)
def initiate_chat(self, recipient: "ConversableAgent", clear_history: Optional[bool]=True, silent: Optional[bool]=False, **context,):
self._prepare_chat(recipient, clear_history)
self.send(self.generate_init_message(**context), recipient, silent=silent)
def receive(
self,
message: Union[Dict, str],
sender: Agent,
request_reply: Optional[bool] = None,
silent: Optional[bool] = False,
):
self._process_received_message(message, sender, silent)
if request_reply is False or request_reply is None and self.reply_at_receive[sender] is False:
return
reply = self.generate_reply(messages=self.chat_messages[sender], sender=sender)
if reply is not None:
self.send(reply, sender, silent=silent)
def error_debugger(self, config, code, error_info):
# import prompt
if self.dataset == 'mimic_iii':
from prompts_mimic import CodeDebugger
else:
from prompts_eicu import CodeDebugger
# Returns the related information to the given query.
patience = 2
sleep_time = 30
openai.api_type = config["api_type"]
openai.api_base = config["base_url"]
openai.api_version = config["api_version"]
openai.api_key = config["api_key"]
engine = config["model"]
query_message = CodeDebugger.format(question=self.question, code=code, error_info=error_info)
messages = [{"role":"system","content":"You are an AI assistant that helps people debug their code. Only list one most possible reason to the errors."},
{"role":"user","content": query_message}]
client = AzureOpenAI(
api_key=config["api_key"],
azure_endpoint=config["base_url"],
api_version=config["api_version"],
)
while patience > 0:
patience -= 1
try:
response = client.chat.completions.create(
model=engine,
messages = messages,
temperature=0,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None)
prediction = response.choices[0].message.content.strip()
if prediction != "" and prediction != None:
return prediction
except Exception as e:
print(e)
if sleep_time > 0:
time.sleep(sleep_time)
return "Fail to diagnose the reasons to the errors."
def execute_function(self, func_call):
"""Execute a function call and return the result.
Override this function to modify the way to execute a function call.
Args:
func_call: a dictionary extracted from openai message at key "function_call" with keys "name" and "arguments".
Returns:
A tuple of (is_exec_success, result_dict).
is_exec_success (boolean): whether the execution is successful.
result_dict: a dictionary with keys "name", "role", and "content". Value of "role" is "function".
"""
func_name = func_call.get("name", "")
func = self._function_map.get(func_name, None)
is_exec_success = False
if func is not None:
# Extract arguments from a json-like string and put it into a dict.
input_string = self._format_json_str(func_call.get("arguments", "{}"))
try:
arguments = json.loads(input_string)
except json.JSONDecodeError as e:
arguments = None
arguments_string = func_call["arguments"].split(': "')[-1]
arguments_string = arguments_string.split('", ')[0]
arguments = {"cell": arguments_string}
# content = f"Error: {e}\n You argument should follow json format."
content = f"Error: {e}\n There might be compilation errors in the code. Please check the code and try again."
# Try to execute the function
if arguments is not None:
print(
colored(f"\n>>>>>>>> EXECUTING FUNCTION {func_name}...", "magenta"),
flush=True,
)
self.code = arguments["cell"]
try:
content = func(**arguments)
is_exec_success = True
except Exception as e:
content = f"Error: {e}"
else:
content = f"Error: Function {func_name} not found."
if "error" in content or "Error" in content:
reasons = self.error_debugger(self.config_list[0], self.code, content)
content = content + '\nPotential Reasons: ' + reasons
return is_exec_success, {
"name": func_name,
"role": "function",
"content": str(content),
}
def update_memory(self, num_shots, memory):
self.num_shots = num_shots
self.memory = memory
def register_dataset(self, dataset):
self.dataset = dataset