'''
test
'''
import json
import spacy
import pytextrank
from collections import defaultdict
nlp = spacy.load('en_core_web_sm')
# load
nlp = spacy.load("en_core_web_sm")
# add PyTextRank to the spaCy pipeline
tr = pytextrank.TextRank()
nlp.add_pipe(tr.PipelineComponent, name='textrank', last=True)
# method
def pytextrank_extract(free_text,topk=30):
query_set = defaultdict(float)
'textrank extraction'
doc = nlp(free_text)
for p in doc._.phrases:
if len(p.text) > 5:
query_set[p.text] = query_set[p.text] + p.rank
ordered_query_set = [(k,v) for k, v in sorted(query_set.items(), key=lambda item: item[1],reverse=True)][:topk]
result_list = []
for query, score in ordered_query_set:
# print(query,score)
result_list.append(query)
return result_list
# ordered_query_set = extract(test_free_text)
#
# # print out