|
a |
|
b/tests/all_tests.py |
|
|
1 |
import unittest |
|
|
2 |
import random |
|
|
3 |
import sys, os |
|
|
4 |
import re |
|
|
5 |
import nltk |
|
|
6 |
import json |
|
|
7 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
8 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'allennlp'))) |
|
|
9 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'summarization', 'pubmed_summarization'))) |
|
|
10 |
# print(sys.path) |
|
|
11 |
from ehrkit import ehrkit |
|
|
12 |
from getpass import getpass |
|
|
13 |
|
|
|
14 |
try: |
|
|
15 |
from config import USERNAME, PASSWORD |
|
|
16 |
except: |
|
|
17 |
print("Please put your username and password in config.py") |
|
|
18 |
USERNAME = input('DB_username?') |
|
|
19 |
PASSWORD = getpass('DB_password?') |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
DOC_ID = 1354526 # Temporary!!! |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
# Number of documents in NOTEEVENTS. |
|
|
26 |
NUM_DOCS = 2083180 |
|
|
27 |
|
|
|
28 |
# Number of patients in PATIENTS. |
|
|
29 |
NUM_PATIENTS = 46520 |
|
|
30 |
|
|
|
31 |
# Number of diagnoses in DIAGNOSES_ICD. |
|
|
32 |
NUM_DIAGS = 823933 |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
def select_ehr(ehrdb, requires_long=False, recursing=False): |
|
|
36 |
if recursing: |
|
|
37 |
doc_id = '' |
|
|
38 |
else: |
|
|
39 |
# doc_id = input("MIMIC Document ID [press Enter for random]: ") |
|
|
40 |
doc_id = '' |
|
|
41 |
if doc_id == '': |
|
|
42 |
# Picks random document |
|
|
43 |
ehrdb.cur.execute("SELECT ROW_ID FROM mimic.NOTEEVENTS ORDER BY RAND() LIMIT 1") |
|
|
44 |
doc_id = ehrdb.cur.fetchall()[0][0] |
|
|
45 |
text = ehrdb.get_document(int(doc_id)) |
|
|
46 |
if len(text.split()) > 200 or not requires_long: |
|
|
47 |
return doc_id, text |
|
|
48 |
else: |
|
|
49 |
return select_ehr(ehrdb, requires_long, True) |
|
|
50 |
else: |
|
|
51 |
# Get inputted document |
|
|
52 |
try: |
|
|
53 |
text = ehrdb.get_document(int(doc_id)) |
|
|
54 |
return doc_id, text |
|
|
55 |
except: |
|
|
56 |
message = 'Error: There is no document with ID \'' + doc_id + '\' in mimic.NOTEEVENTS' |
|
|
57 |
sys.exit(message) |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
def get_nb_dir(ending, SUMM_DIR): |
|
|
61 |
# Gets path of Naive Bayes model trained on most examples |
|
|
62 |
dir_nums = [] |
|
|
63 |
for dir in os.listdir(SUMM_DIR): |
|
|
64 |
if os.path.isdir(os.path.join(SUMM_DIR, dir)) and dir.endswith('_exs_' + ending): |
|
|
65 |
if os.path.exists(os.path.join(SUMM_DIR, dir, 'nb')): |
|
|
66 |
try: |
|
|
67 |
dir_nums.append(int(dir.split('_')[0])) |
|
|
68 |
except: |
|
|
69 |
continue |
|
|
70 |
if len(dir_nums) > 0: |
|
|
71 |
best_dir_name = str(max(dir_nums)) + '_exs_' + ending |
|
|
72 |
return best_dir_name |
|
|
73 |
else: |
|
|
74 |
return None |
|
|
75 |
|
|
|
76 |
def show_summary(doc_id, text, summary, model_name): |
|
|
77 |
# x = input('Show full EHR (DOC ID %s)? [DEFAULT=Yes]' % doc_id) |
|
|
78 |
x = '' |
|
|
79 |
if x.lower() in ['y', 'yes', '']: |
|
|
80 |
print('\n\n' + '-'*30 + 'Full EHR' + '-'*30) |
|
|
81 |
print(text + '\n') |
|
|
82 |
print('-'*80 + '\n\n') |
|
|
83 |
|
|
|
84 |
print('-'*30 + 'Predicted Summary ' + model_name + '-'*30) |
|
|
85 |
print(summary) |
|
|
86 |
print('-'*80 + '\n\n') |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
class tests(unittest.TestCase): |
|
|
90 |
def setUp(self): |
|
|
91 |
self.ehrdb = ehrkit.start_session(USERNAME, PASSWORD) |
|
|
92 |
self.ehrdb.get_patients(3) |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
''' Runs tests 1.1-1.4 ''' |
|
|
96 |
class t1(tests): |
|
|
97 |
def test1_1(self): |
|
|
98 |
kit_count = self.ehrdb.count_patients() |
|
|
99 |
print("Patient count: ", kit_count) |
|
|
100 |
|
|
|
101 |
self.ehrdb.cur.execute("SELECT COUNT(*) FROM mimic.PATIENTS") |
|
|
102 |
raw = self.ehrdb.cur.fetchall() |
|
|
103 |
test_count = int(raw[0][0]) |
|
|
104 |
|
|
|
105 |
self.assertEqual(test_count, kit_count) |
|
|
106 |
|
|
|
107 |
def test1_2(self): |
|
|
108 |
# Fails! count_docs returns 1573339, but mimic.NOTEEVENTS has 2083180 documents. |
|
|
109 |
# TO DO: Fix whatever is wrong here |
|
|
110 |
kit_count = self.ehrdb.count_docs(['NOTEEVENTS']) |
|
|
111 |
print("Document count: ", kit_count) |
|
|
112 |
|
|
|
113 |
self.ehrdb.cur.execute("SELECT COUNT(*) FROM mimic.NOTEEVENTS") |
|
|
114 |
raw = self.ehrdb.cur.fetchall() |
|
|
115 |
test_count = int(raw[0][0]) |
|
|
116 |
|
|
|
117 |
self.assertEqual(test_count, kit_count) |
|
|
118 |
|
|
|
119 |
def test1_3(self): |
|
|
120 |
self.ehrdb.get_note_events() |
|
|
121 |
print('output format: SUBJECT_ID, ROW_ID, NoteEvent length') |
|
|
122 |
lens = [(patient.id, note[0], len(note[1])) for patient in self.ehrdb.patients.values() for note in patient.note_events] |
|
|
123 |
print(lens) |
|
|
124 |
|
|
|
125 |
# placeholder, this output cannot be checked easily |
|
|
126 |
self.assertEqual(1, 1) |
|
|
127 |
|
|
|
128 |
def test1_4(self): |
|
|
129 |
# Gets longest note among the patient notes queued by get_note_events() |
|
|
130 |
self.ehrdb.get_note_events() |
|
|
131 |
pid, rowid, doclen = self.ehrdb.longest_NE() |
|
|
132 |
print('patient id is:', pid, 'NoteEvent id is:', rowid, 'length: ', doclen) |
|
|
133 |
|
|
|
134 |
# placeholder, this output cannot be checked easily |
|
|
135 |
self.assertEqual(1, 1) |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
class t2(tests): |
|
|
139 |
def test2_1(self): |
|
|
140 |
### There are 2083180 patient records in NOTEEVENTS. ### |
|
|
141 |
record_id = random.randint(1, NUM_DOCS + 1) |
|
|
142 |
kit_rec = self.ehrdb.get_document(record_id) |
|
|
143 |
print("Document with ID %d\n: " % record_id, kit_rec) |
|
|
144 |
|
|
|
145 |
self.ehrdb.cur.execute("select TEXT from mimic.NOTEEVENTS where ROW_ID = %d" % record_id) |
|
|
146 |
test_rec = self.ehrdb.cur.fetchall()[0][0] |
|
|
147 |
|
|
|
148 |
self.assertEqual(kit_rec, test_rec) |
|
|
149 |
|
|
|
150 |
def test2_2(self): |
|
|
151 |
### There are records from 46520 unique patients in MIMIC. ### |
|
|
152 |
patient_id = random.randint(1, NUM_PATIENTS + 1) |
|
|
153 |
kit_ids = self.ehrdb.get_all_patient_document_ids(patient_id) |
|
|
154 |
print('Document IDs related to Patient %d: ' % patient_id, kit_ids) |
|
|
155 |
print("Number of docs related to Patient %d: " % patient_id, len(kit_ids)) |
|
|
156 |
|
|
|
157 |
self.ehrdb.cur.execute("select ROW_ID from mimic.NOTEEVENTS where SUBJECT_ID = %d" % patient_id) |
|
|
158 |
raw = self.ehrdb.cur.fetchall() |
|
|
159 |
test_ids = ehrkit.flatten(raw) |
|
|
160 |
|
|
|
161 |
self.assertEqual(kit_ids, test_ids) |
|
|
162 |
|
|
|
163 |
def test2_3(self): |
|
|
164 |
kit_ids = self.ehrdb.list_all_document_ids() |
|
|
165 |
# print(kit_ids) |
|
|
166 |
|
|
|
167 |
self.ehrdb.cur.execute("select ROW_ID from mimic.NOTEEVENTS") |
|
|
168 |
raw = self.ehrdb.cur.fetchall() |
|
|
169 |
test_ids = ehrkit.flatten(raw) |
|
|
170 |
|
|
|
171 |
self.assertEqual(kit_ids, test_ids) |
|
|
172 |
|
|
|
173 |
def test2_4(self): |
|
|
174 |
kit_ids = self.ehrdb.list_all_patient_ids() |
|
|
175 |
|
|
|
176 |
self.ehrdb.cur.execute("select SUBJECT_ID from mimic.PATIENTS") |
|
|
177 |
raw = self.ehrdb.cur.fetchall() |
|
|
178 |
test_ids = ehrkit.flatten(raw) |
|
|
179 |
|
|
|
180 |
self.assertEqual(kit_ids, test_ids) |
|
|
181 |
|
|
|
182 |
def test2_5(self): |
|
|
183 |
### Select random date from a date in the database. |
|
|
184 |
### Dates are shifted to future but preserve time, weekday, and seasonality. |
|
|
185 |
random_id = random.randint(1, NUM_DOCS + 1) |
|
|
186 |
self.ehrdb.cur.execute("select CHARTDATE from mimic.NOTEEVENTS where ROW_ID = %d" % random_id) |
|
|
187 |
date = self.ehrdb.cur.fetchall()[0][0] |
|
|
188 |
|
|
|
189 |
kit_ids = self.ehrdb.get_documents_d(date) |
|
|
190 |
|
|
|
191 |
self.ehrdb.cur.execute("select ROW_ID from mimic.NOTEEVENTS where CHARTDATE = \"%s\"" % date) |
|
|
192 |
raw = self.ehrdb.cur.fetchall() |
|
|
193 |
test_ids = ehrkit.flatten(raw) |
|
|
194 |
|
|
|
195 |
self.assertEqual(kit_ids, test_ids) |
|
|
196 |
|
|
|
197 |
|
|
|
198 |
class t3(tests): |
|
|
199 |
def test3_1(self): |
|
|
200 |
# Defines abbreviation as a string of capitalized letters |
|
|
201 |
random_id = random.randint(1, NUM_DOCS + 1) |
|
|
202 |
print("Collecting abbreviations for document %d..." % random_id) |
|
|
203 |
kit_abbs = self.ehrdb.get_abbreviations(random_id) |
|
|
204 |
|
|
|
205 |
sents = self.ehrdb.get_document_sents(random_id) |
|
|
206 |
test_abbs = set() |
|
|
207 |
for sent in sents: |
|
|
208 |
for word in ehrkit.word_tokenize(sent): |
|
|
209 |
print(word) |
|
|
210 |
pattern = r'[A-Z]{2}' # Only selects words in ALL CAPS |
|
|
211 |
if re.match(pattern, word): |
|
|
212 |
test_abbs.add(word) |
|
|
213 |
|
|
|
214 |
print(kit_abbs) |
|
|
215 |
|
|
|
216 |
self.assertEqual(kit_abbs, list(test_abbs)) |
|
|
217 |
|
|
|
218 |
def test3_2(self): |
|
|
219 |
query = "meningitis" |
|
|
220 |
# print('Printing a list of all document ids including query like ', query) |
|
|
221 |
kit_ids = self.ehrdb.get_documents_q(query) |
|
|
222 |
# print(kit_ids) # Extremely long list of DOC_IDs |
|
|
223 |
|
|
|
224 |
query = "%"+query+"%" |
|
|
225 |
self.ehrdb.cur.execute("select ROW_ID from mimic.NOTEEVENTS where TEXT like \'%s\'" % query) |
|
|
226 |
raw = self.ehrdb.cur.fetchall() |
|
|
227 |
test_ids = ehrkit.flatten(raw) |
|
|
228 |
|
|
|
229 |
self.assertEqual(kit_ids, test_ids) |
|
|
230 |
|
|
|
231 |
def test3_3(self): |
|
|
232 |
### Task 3.3 is the same as task 3.2 with a different query. ### |
|
|
233 |
query = "Service: SURGERY" |
|
|
234 |
# print('Printing a list of all document ids including query like ', query) |
|
|
235 |
kit_ids = self.ehrdb.get_documents_q(query) |
|
|
236 |
# print(kit_ids) # Extremely long list of DOC_IDs |
|
|
237 |
|
|
|
238 |
query = "%"+query+"%" |
|
|
239 |
self.ehrdb.cur.execute("select ROW_ID from mimic.NOTEEVENTS where TEXT like \'%s\'" % query) |
|
|
240 |
raw = self.ehrdb.cur.fetchall() |
|
|
241 |
test_ids = ehrkit.flatten(raw) |
|
|
242 |
|
|
|
243 |
self.assertEqual(kit_ids, test_ids) |
|
|
244 |
|
|
|
245 |
def test3_4(self): |
|
|
246 |
doc_id = random.randint(1, NUM_DOCS + 1) |
|
|
247 |
# print('Kit function printing a numbered list of all sentences in document %d' % doc_id) |
|
|
248 |
# MIMIC EHRs are very messy and sentence tokenizaton often doesn't work |
|
|
249 |
kit_doc = self.ehrdb.get_document_sents(doc_id) |
|
|
250 |
# ehrkit.numbered_print(kit_doc) |
|
|
251 |
|
|
|
252 |
self.ehrdb.cur.execute("select TEXT from mimic.NOTEEVENTS where ROW_ID = %d " % doc_id) |
|
|
253 |
raw = self.ehrdb.cur.fetchall() |
|
|
254 |
test_doc = ehrkit.sent_tokenize(raw[0][0]) |
|
|
255 |
|
|
|
256 |
self.assertEqual(kit_doc, test_doc) |
|
|
257 |
|
|
|
258 |
def test3_7(self): |
|
|
259 |
kit_meds = self.ehrdb.count_all_prescriptions() |
|
|
260 |
|
|
|
261 |
test_meds = {} |
|
|
262 |
self.ehrdb.cur.execute("select DRUG from mimic.PRESCRIPTIONS") |
|
|
263 |
raw = self.ehrdb.cur.fetchall() |
|
|
264 |
meds_list = ehrkit.flatten(raw) |
|
|
265 |
for med in meds_list: |
|
|
266 |
if med in test_meds: |
|
|
267 |
test_meds[med] += 1 |
|
|
268 |
else: |
|
|
269 |
test_meds[med] = 1 |
|
|
270 |
|
|
|
271 |
self.assertEqual(kit_meds, test_meds) |
|
|
272 |
|
|
|
273 |
|
|
|
274 |
class t4(tests): |
|
|
275 |
def test4_1(self): |
|
|
276 |
d = self.ehrdb.get_documents_icd9() |
|
|
277 |
print(d) |
|
|
278 |
self.assertIsNotNone(d['code']) |
|
|
279 |
|
|
|
280 |
def test4_4(self): |
|
|
281 |
pass |
|
|
282 |
|
|
|
283 |
|
|
|
284 |
class t5(tests): |
|
|
285 |
def test5_1(self): |
|
|
286 |
doc_id = random.randint(1, NUM_DOCS + 1) |
|
|
287 |
kit_phrases = self.ehrdb.extract_phrases(doc_id) |
|
|
288 |
|
|
|
289 |
print("Testing task 5.1\n Check phrases manually: ", kit_phrases) |
|
|
290 |
|
|
|
291 |
self.assertIsNotNone(kit_phrases) |
|
|
292 |
|
|
|
293 |
def test5_4(self): |
|
|
294 |
gender = random.choice(['M', 'F']) |
|
|
295 |
kit_count = self.ehrdb.count_gender(gender) |
|
|
296 |
|
|
|
297 |
self.ehrdb.cur.execute('SELECT COUNT(*) FROM mimic.PATIENTS WHERE GENDER = \'%s\'' % gender) |
|
|
298 |
raw = self.ehrdb.cur.fetchall() |
|
|
299 |
test_count = raw[0][0] |
|
|
300 |
print('Gender:', gender, '\tCount:', str(test_count)) |
|
|
301 |
|
|
|
302 |
self.assertEqual(kit_count, test_count) |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
# class t6(tests): |
|
|
306 |
# def test6_1(self): |
|
|
307 |
# import loader |
|
|
308 |
|
|
|
309 |
# doc_id, text = select_ehr(self.ehrdb) |
|
|
310 |
|
|
|
311 |
# # x = input('GloVe or RoBERTa predictor [g=GloVe, r=RoBERTa]? ') |
|
|
312 |
# x = 'g' |
|
|
313 |
# if x == 'g': |
|
|
314 |
# glove_predictor = loader.load_glove() |
|
|
315 |
# probs = glove_predictor.predict(text)['probs'] |
|
|
316 |
# elif x == 'r': |
|
|
317 |
# roberta_predictor = loader.load_roberta() |
|
|
318 |
# try: |
|
|
319 |
# probs = roberta_predictor.predict(text)['probs'] |
|
|
320 |
# except: |
|
|
321 |
# print('Document too long for RoBERTa model. Using GLoVe instead.') |
|
|
322 |
# glove_predictor = loader.load_glove() |
|
|
323 |
# probs = glove_predictor.predict(text)['probs'] |
|
|
324 |
# else: |
|
|
325 |
# sys.exit('Error: Must input \'g\' or \'r\'') |
|
|
326 |
|
|
|
327 |
# classification = 'Positive' if probs[0] >= 0.5 else 'Negative' |
|
|
328 |
# print("Document ID: ", doc_id, "\tPredicted Sentiment: ", classification) |
|
|
329 |
|
|
|
330 |
# def test6_2(self): |
|
|
331 |
# import loader |
|
|
332 |
|
|
|
333 |
# doc_id, text = select_ehr(self.ehrdb) |
|
|
334 |
|
|
|
335 |
# if os.path.exists("../allennlp/elmo-ner/whole_model.pt"): |
|
|
336 |
# predictor = loader.load_ner() |
|
|
337 |
# else: |
|
|
338 |
# predictor = loader.download_ner() |
|
|
339 |
|
|
|
340 |
# text = self.ehrdb.get_document(int(doc_id)) |
|
|
341 |
# pred = predictor.predict(text) |
|
|
342 |
# # pred = predictor.predict("John likes and Bill hates ice cream") |
|
|
343 |
# # print_results = input("Prediction complete. Print results? (y/n): ") |
|
|
344 |
# print_results='y' |
|
|
345 |
# if print_results == "y": |
|
|
346 |
# print("Document ID: ", doc_id, " Results: ", pred['tags']) |
|
|
347 |
|
|
|
348 |
# def test6_3(self): |
|
|
349 |
# import torch |
|
|
350 |
# from transformers import BertTokenizer#, BertModel, BertForMaskedLM |
|
|
351 |
|
|
|
352 |
# doc_id, text = select_ehr(self.ehrdb) |
|
|
353 |
# tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
|
354 |
# bert_tokenized_text = tokenizer.tokenize(text) |
|
|
355 |
# print('\n' + '-'*20 + 'text' + '-'*20) |
|
|
356 |
# print(text) |
|
|
357 |
# print('\n' + '-'*20 + 'Tokenized text from Huggingface BERT Tokenizer' + '-'*20) |
|
|
358 |
# print(bert_tokenized_text) |
|
|
359 |
|
|
|
360 |
|
|
|
361 |
# # library function |
|
|
362 |
# ehr_bert_tokenized_text = self.ehrdb.get_bert_tokenize(doc_id) |
|
|
363 |
# self.assertEqual(bert_tokenized_text, ehr_bert_tokenized_text) |
|
|
364 |
|
|
|
365 |
|
|
|
366 |
class t7(tests): |
|
|
367 |
# Summarization algorithms |
|
|
368 |
def test7_1(self): |
|
|
369 |
from pubmed_naive_bayes import classify_nb |
|
|
370 |
from get_pubmed_nb_data import build_vecs |
|
|
371 |
from sklearn.naive_bayes import GaussianNB |
|
|
372 |
|
|
|
373 |
doc_id, text = select_ehr(self.ehrdb) |
|
|
374 |
# body_type = input('Use Naive Bayes model trained from whole body sections or just their body introductions?\n\t'\ |
|
|
375 |
# '[w=whole body, j=just intro, DEFAULT=just intro]: ') |
|
|
376 |
body_type = 'j' |
|
|
377 |
if body_type == 'w': |
|
|
378 |
ending = 'body' |
|
|
379 |
elif body_type in ['j', '']: |
|
|
380 |
ending = 'intro' |
|
|
381 |
else: |
|
|
382 |
sys.exit('Error: Must input \'w\' or \'j.\'') |
|
|
383 |
SUMM_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'summarization', 'pubmed_summarization')) |
|
|
384 |
best_dir_name = get_nb_dir(ending, SUMM_DIR) |
|
|
385 |
if not best_dir_name: |
|
|
386 |
message = 'No Naive Bayes models of this type have been fit. '\ |
|
|
387 |
'Would you like to do so now?\n\t[DEFAULT=Yes] ' |
|
|
388 |
# response = input(message) |
|
|
389 |
response = '' |
|
|
390 |
if response.lower() in ['y', 'yes', '']: |
|
|
391 |
command = 'python ' + os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'summarization', 'pubmed_summarization', 'pubmed_naive_bayes.py')) |
|
|
392 |
os.system(command) |
|
|
393 |
best_dir_name = get_nb_dir(ending) |
|
|
394 |
if response.lower() not in ['y', 'yes', ''] or not best_dir_name: |
|
|
395 |
sys.exit('Exiting.') |
|
|
396 |
|
|
|
397 |
# Fits model to data |
|
|
398 |
NB_DIR = os.path.join(SUMM_DIR, best_dir_name, 'nb') |
|
|
399 |
with open(os.path.join(NB_DIR, 'feature_vecs.json'), 'r') as f: |
|
|
400 |
data = json.load(f) |
|
|
401 |
xtrain, ytrain = data['train_features'], data['train_outputs'] |
|
|
402 |
gnb = GaussianNB() |
|
|
403 |
gnb.fit(xtrain, ytrain) |
|
|
404 |
|
|
|
405 |
# Evaluates on model |
|
|
406 |
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') |
|
|
407 |
feature_vecs, _ = build_vecs(text, None, tokenizer) |
|
|
408 |
PCT_SUM = 0.3 |
|
|
409 |
preds = classify_nb(feature_vecs, PCT_SUM, gnb) |
|
|
410 |
sents = tokenizer.tokenize(text) |
|
|
411 |
summary = '' |
|
|
412 |
for i in range(len(preds)): |
|
|
413 |
if preds[i] == 1: |
|
|
414 |
summary += sents[i] |
|
|
415 |
|
|
|
416 |
show_summary(doc_id, text, summary, 'Naive Bayes') |
|
|
417 |
|
|
|
418 |
def test7_2(self): |
|
|
419 |
# Distilbart for summarization. Trained on CNN/ Daily Mail (~4x longer summaries than XSum) |
|
|
420 |
doc_id, text = select_ehr(self.ehrdb, requires_long=True) |
|
|
421 |
model_name = 'sshleifer/distilbart-cnn-12-6' |
|
|
422 |
summary = self.ehrdb.summarize_huggingface(text, model_name) |
|
|
423 |
|
|
|
424 |
show_summary(doc_id, text, summary, model_name) |
|
|
425 |
print('Number of Words in Full EHR: %d' % len(text.split())) |
|
|
426 |
print('Number of Words in %s Summary: %d' % (model_name, len(summary.split()))) |
|
|
427 |
|
|
|
428 |
def test7_3(self): |
|
|
429 |
# T5 for summarization. Trained on CNN/ Daily Mail |
|
|
430 |
doc_id, text = select_ehr(self.ehrdb, requires_long=True) |
|
|
431 |
model_name = 't5-small' |
|
|
432 |
summary = self.ehrdb.summarize_huggingface(text, model_name) |
|
|
433 |
|
|
|
434 |
show_summary(doc_id, text, summary, model_name) |
|
|
435 |
print('Number of Words in Full EHR: %d' % len(text.split())) |
|
|
436 |
print('Number of Words in %s Summary: %d' % (model_name, len(summary.split()))) |
|
|
437 |
|
|
|
438 |
|
|
|
439 |
if __name__ == '__main__': |
|
|
440 |
unittest.main() |