from __future__ import unicode_literals
from sklearn.ensemble import RandomForestClassifier
from collections import Counter
import pandas as pd
import numpy as np
class Regressor():
def __init__(self):
#self.raw_embedding = load_embedding_from_url(url='http://nlp.stanford.edu/data/glove.6B.zip', filename='glove.6B.200d.txt')
self.clf = RandomForestClassifier()
# self.metaclf = XGBClassifier()
def fit(self, X, y):
self.clf.fit(X, y)
def predict(self, X):
proba = self.clf.predict_proba(X)
res = []
for x in proba:
temp = []
for i,y in enumerate(x):
if y[0] == 1.:
temp.append(0)
else:
temp.append(1)
res.append(temp)
y_proba = np.array(res).T
return 0.1 * np.ones_like(y_proba)