|
a |
|
b/allennlp/sentiment.py |
|
|
1 |
import sys |
|
|
2 |
import os |
|
|
3 |
import torch |
|
|
4 |
import re |
|
|
5 |
import loader |
|
|
6 |
# from allennlp.models.archival import * |
|
|
7 |
from allennlp.data import DatasetReader |
|
|
8 |
from allennlp.common.params import Params |
|
|
9 |
from allennlp.predictors.text_classifier import TextClassifierPredictor |
|
|
10 |
import time |
|
|
11 |
|
|
|
12 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
13 |
from ehrkit import ehrkit |
|
|
14 |
# from config import USERNAME, PASSWORD |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def load_glove(): |
|
|
18 |
# Loads GLOVE model |
|
|
19 |
glove_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "glove_sentiment_predictor.txt") |
|
|
20 |
if os.path.exists(glove_path): # same dir for github |
|
|
21 |
print('Loading Glove Sentiment Analysis Model') |
|
|
22 |
predictor = torch.load(glove_path) |
|
|
23 |
else: |
|
|
24 |
print('Downloading Glove Sentiment Analysis Model') |
|
|
25 |
predictor = loader.download_glove() |
|
|
26 |
return predictor |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
def load_roberta(): |
|
|
30 |
# Loads Roberta model |
|
|
31 |
serialization_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'roberta', '') |
|
|
32 |
config_file = os.path.join(serialization_dir, 'config.json') |
|
|
33 |
if os.path.exists(config_file): |
|
|
34 |
print('Loading Roberta Sentiment Analysis Model') |
|
|
35 |
model_file = os.path.join(serialization_dir, 'whole_model.pt') |
|
|
36 |
model = torch.load(model_file) |
|
|
37 |
loaded_params = Params.from_file(config_file) |
|
|
38 |
dataset_reader = DatasetReader.from_params(loaded_params.get('dataset_reader')) |
|
|
39 |
|
|
|
40 |
# Gets predictor from model and dataset reader |
|
|
41 |
predictor = TextClassifierPredictor(model, dataset_reader) |
|
|
42 |
|
|
|
43 |
# weights_file = os.path.join(serialization_dir, 'weights.th') |
|
|
44 |
# loaded_model = Model.load(loaded_params, serialization_dir, weights_file) # Takes forever |
|
|
45 |
# archive = load_archive(os.path.join('roberta', 'model.tar.gz')) # takes forever |
|
|
46 |
else: |
|
|
47 |
print('Downloading Roberta Sentiment Analysis Model') |
|
|
48 |
predictor = loader.download_roberta() |
|
|
49 |
return predictor |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
def get_doc(): |
|
|
53 |
doc_id = input("MIMIC Document ID [press Enter for random]: ") |
|
|
54 |
if doc_id == '': |
|
|
55 |
ehrdb.cur.execute("SELECT ROW_ID FROM mimic.NOTEEVENTS ORDER BY RAND() LIMIT 1") |
|
|
56 |
doc_id = ehrdb.cur.fetchall()[0][0] |
|
|
57 |
print('Document ID: %s' % doc_id) |
|
|
58 |
try: |
|
|
59 |
text = ehrdb.get_document(int(doc_id)) |
|
|
60 |
clean_text = re.sub('[^A-Za-z0-9\.\,\-\/]+', ' ', text).lower() |
|
|
61 |
return doc_id, clean_text |
|
|
62 |
except: |
|
|
63 |
message = 'Error: There is no document with ID \'' + doc_id + '\' in mimic.NOTEEVENTS' |
|
|
64 |
sys.exit(message) |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
if __name__ == '__main__': |
|
|
68 |
# ehrdb = ehrkit.start_session(USERNAME, PASSWORD) |
|
|
69 |
ehrdb = ehrkit.start_session("jeremy.goldwasser@localhost", "mysql4710") |
|
|
70 |
doc_id, clean_text = get_doc() |
|
|
71 |
# print('LENGTH OF DOCUMENT: %d' % len(clean_text)) |
|
|
72 |
|
|
|
73 |
x = input('GloVe or RoBERTa predictor [g=GloVe, r=RoBERTa]? ') |
|
|
74 |
if x == 'g': |
|
|
75 |
glove_predictor = load_glove() |
|
|
76 |
probs = glove_predictor.predict(clean_text)['probs'] |
|
|
77 |
elif x == 'r': |
|
|
78 |
roberta_predictor = load_roberta() |
|
|
79 |
try: |
|
|
80 |
probs = roberta_predictor.predict(clean_text)['probs'] |
|
|
81 |
except: |
|
|
82 |
print('Document too long for RoBERTa model. Using GLoVe instead.') |
|
|
83 |
glove_predictor = load_glove() |
|
|
84 |
probs = glove_predictor.predict(clean_text)['probs'] |
|
|
85 |
else: |
|
|
86 |
sys.exit('Error: Must input \'g\' or \'r\'') |
|
|
87 |
|
|
|
88 |
classification = 'Positive' if probs[0] >= 0.5 else 'Negative' |
|
|
89 |
print('Sentiment of document: %s' % classification) |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
# # jeremy.goldwasser@localhost |
|
|
93 |
# # Save sentiment as json file |
|
|
94 |
# sentiment = {'text': clean_text, 'sentiment': classification, 'prob': probs[0]} |
|
|
95 |
# with open('predicted_sentiments/' + str(doc_id) + '.json', 'w', encoding='utf-8') as f: |
|
|
96 |
# json.dump(sentiment, f, ensure_ascii=False, indent=4) |
|
|
97 |
|