|
a |
|
b/QueryExtraction/keybert_test_query.py |
|
|
1 |
''' |
|
|
2 |
https://github.com/MaartenGr/KeyBERT |
|
|
3 |
|
|
|
4 |
Other choices: xlm-r-distilroberta-base-paraphrase-v1 |
|
|
5 |
|
|
|
6 |
Cite: |
|
|
7 |
@misc{grootendorst2020keybert, |
|
|
8 |
author = {Maarten Grootendorst}, |
|
|
9 |
title = {KeyBERT: Minimal keyword extraction with BERT.}, |
|
|
10 |
year = 2020, |
|
|
11 |
publisher = {Zenodo}, |
|
|
12 |
version = {v0.1.3}, |
|
|
13 |
doi = {10.5281/zenodo.4461265}, |
|
|
14 |
url = {https://doi.org/10.5281/zenodo.4461265} |
|
|
15 |
} |
|
|
16 |
|
|
|
17 |
''' |
|
|
18 |
|
|
|
19 |
from keybert import KeyBERT |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def keybert_extract(doc,topk=30): |
|
|
23 |
''' |
|
|
24 |
Return 1-gram,2-gram and 3-gram, return top 30 |
|
|
25 |
:param doc: |
|
|
26 |
:param topk: |
|
|
27 |
:return: |
|
|
28 |
''' |
|
|
29 |
model = KeyBERT('distilbert-base-nli-mean-tokens') |
|
|
30 |
|
|
|
31 |
results = model.extract_keywords(doc, keyphrase_ngram_range=(1, 2), top_n=100, |
|
|
32 |
use_mmr=True, diversity=0.7, |
|
|
33 |
stop_words='english') |
|
|
34 |
|
|
|
35 |
selected = [k for k, v in sorted(results, key=lambda item: item[1], reverse=True)][:topk] |
|
|
36 |
|
|
|
37 |
return selected |