|
a |
|
b/main.R |
|
|
1 |
Get_PubMed_Data <- function(topic, start_date, end_date, return_count) { |
|
|
2 |
require(RISmed) |
|
|
3 |
|
|
|
4 |
search_query <- EUtilsSummary(topic, retmax=return_count, mindate=start_date,maxdate=end_date) |
|
|
5 |
summary(search_query) |
|
|
6 |
# see the ids of our returned query |
|
|
7 |
QueryId(search_query) |
|
|
8 |
# get actual data from PubMed |
|
|
9 |
records<- EUtilsGet(search_query) |
|
|
10 |
class(records) |
|
|
11 |
# store it |
|
|
12 |
pubmed_data <- data.frame('Title'=ArticleTitle(records),'Abstract'=AbstractText(records)) |
|
|
13 |
head(pubmed_data,1) |
|
|
14 |
pubmed_data$Title <- as.character(pubmed_data$Title) |
|
|
15 |
pubmed_data$Abstract <- as.character(pubmed_data$Abstract) |
|
|
16 |
pubmed_data$Abstract <- gsub(",", " ", pubmed_data$Abstract, fixed = TRUE) |
|
|
17 |
|
|
|
18 |
return (pubmed_data) |
|
|
19 |
} |
|
|
20 |
|
|
|
21 |
medical_corpus <- Get_PubMed_Data('cardiology', 2013, 2015, 1500) |
|
|
22 |
dim(medical_corpus) |
|
|
23 |
head(medical_corpus) |
|
|
24 |
|
|
|
25 |
Text_To_Clean_Sentences <- function(text_blob) { |
|
|
26 |
# swap all sentence ends with code 'ootoo' |
|
|
27 |
text_blob <- gsub(pattern=';|\\.|!|\\?', x=text_blob, replacement='ootoo') |
|
|
28 |
|
|
|
29 |
# remove all non-alpha text (numbers etc) |
|
|
30 |
text_blob <- gsub(pattern="[^[:alpha:]]", x=text_blob, replacement = ' ') |
|
|
31 |
|
|
|
32 |
# force all characters to lower case |
|
|
33 |
text_blob <- tolower(text_blob) |
|
|
34 |
|
|
|
35 |
# remove any small words {size} or {min,max} |
|
|
36 |
text_blob <- gsub(pattern="\\W*\\b\\w{1,2}\\b", x=text_blob, replacement=' ') |
|
|
37 |
|
|
|
38 |
# remove contiguous spaces |
|
|
39 |
text_blob <- gsub(pattern="\\s+", x=text_blob, replacement=' ') |
|
|
40 |
|
|
|
41 |
# split sentences by split code |
|
|
42 |
sentence_vector <- unlist(strsplit(x=text_blob, split='ootoo',fixed = TRUE)) |
|
|
43 |
return (sentence_vector) |
|
|
44 |
} |
|
|
45 |
|
|
|
46 |
corpus_sentences <- Text_To_Clean_Sentences(paste(medical_corpus$Abstract, collapse=" ")) |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
test_sentence <- "this is a big sentence" |
|
|
50 |
|
|
|
51 |
library(ngram) |
|
|
52 |
ng_2 <- ngram(test_sentence , n=2) |
|
|
53 |
print(ng_2) |
|
|
54 |
|
|
|
55 |
Trim <- function( x ) { |
|
|
56 |
gsub("(^[[:space:]]+|[[:space:]]+$)", "", x) |
|
|
57 |
} |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
Get_Ngrams <- function(sentence_splits, ngram_size=2) { |
|
|
61 |
ngrams <- c() |
|
|
62 |
for (sentence in sentence_splits) { |
|
|
63 |
sentence <- Trim(sentence) |
|
|
64 |
if ((nchar(sentence) > 0) && (sapply(gregexpr("\\W+", sentence), length) >= ngram_size)) { |
|
|
65 |
ngs <- ngram(sentence , n=ngram_size) |
|
|
66 |
ngrams <- c(ngrams, get.ngrams(ngs)) |
|
|
67 |
} |
|
|
68 |
} |
|
|
69 |
return (ngrams) |
|
|
70 |
} |
|
|
71 |
|
|
|
72 |
n2 <- Get_Ngrams(corpus_sentences, ngram_size=2) |
|
|
73 |
n3 <- Get_Ngrams(corpus_sentences, ngram_size=3) |
|
|
74 |
n4 <- Get_Ngrams(corpus_sentences, ngram_size=4) |
|
|
75 |
n5 <- Get_Ngrams(corpus_sentences, ngram_size=5) |
|
|
76 |
|
|
|
77 |
# consolidate all n-gram vectors into one |
|
|
78 |
n_all <- c(n2, n3, n4, n5) |
|
|
79 |
|
|
|
80 |
# save the n-grams in the same folder as your shiny code |
|
|
81 |
write.csv(n_all, "c:\\cordova\\pubmed_cardiology_ngrams.csv", row.names=FALSE) |
|
|
82 |
|
|
|
83 |
head(n_all) |
|
|
84 |
length(n_all) |
|
|
85 |
|
|
|
86 |
# notice the trailing space at end to avoid picking last word |
|
|
87 |
word <- 'infection ' |
|
|
88 |
|
|
|
89 |
matches <- c() |
|
|
90 |
for (sentence in n_all) { |
|
|
91 |
# find exact match with double backslash and escape |
|
|
92 |
if (grepl(paste0('\\<',word), sentence)) { |
|
|
93 |
print(sentence) |
|
|
94 |
matches <- c(matches, sentence) |
|
|
95 |
} |
|
|
96 |
} |
|
|
97 |
|
|
|
98 |
# find highest probability word |
|
|
99 |
precision_match <- c() |
|
|
100 |
for (a_match in matches) { |
|
|
101 |
# how many spaces in from of search word |
|
|
102 |
precision_match <- c(precision_match,nchar(strsplit(x = a_match, split = word)[[1]][[1]])) |
|
|
103 |
} |
|
|
104 |
|
|
|
105 |
# use highest number and a random of highest for multiples |
|
|
106 |
best_matched_sentence <- sample(matches[precision_match == max(precision_match)],size = 1) |
|
|
107 |
|
|
|
108 |
print(best_matched_sentence) |
|
|
109 |
|
|
|
110 |
# notice the trailing space at end to avoid picking last word |
|
|
111 |
word <- 'infection ' |
|
|
112 |
|
|
|
113 |
matches <- c() |
|
|
114 |
for (sentence in n_all) { |
|
|
115 |
# find exact match with double backslash and escape |
|
|
116 |
if (grepl(paste0('\\<',word), sentence)) { |
|
|
117 |
print(sentence) |
|
|
118 |
matches <- c(matches, sentence) |
|
|
119 |
} |
|
|
120 |
} |
|
|
121 |
|
|
|
122 |
# find highest probability word |
|
|
123 |
precision_match <- c() |
|
|
124 |
for (a_match in matches) { |
|
|
125 |
# how many spaces in from of search word |
|
|
126 |
precision_match <- c(precision_match,nchar(strsplit(x = a_match, split = word)[[1]][[1]])) |
|
|
127 |
} |
|
|
128 |
|
|
|
129 |
# use highest number and a random of highest for multiples |
|
|
130 |
best_matched_sentence <- sample(matches[precision_match == max(precision_match)],size = 1) |
|
|
131 |
|
|
|
132 |
print(best_matched_sentence) |
|
|
133 |
|
|
|
134 |
# split the best matching sentence by the search word |
|
|
135 |
best_match <- strsplit(x = best_matched_sentence, split = word)[[1]] |
|
|
136 |
# split second part by spaces and pick first word |
|
|
137 |
best_match <- strsplit(x = best_match[[2]], split = " ")[[1]] |
|
|
138 |
best_match <- best_match[[1]] |
|
|
139 |
|
|
|
140 |
print(best_match) |