[51873b]: / keras_bert / loader.py

Download this file

157 lines (141 with data), 7.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import json
from tensorflow import keras
import numpy as np
import tensorflow as tf
from .bert import get_model
__all__ = [
'build_model_from_config',
'load_model_weights_from_checkpoint',
'load_trained_model_from_checkpoint',
]
def checkpoint_loader(checkpoint_file):
def _loader(name):
return tf.train.load_variable(checkpoint_file, name)
return _loader
def build_model_from_config(config_file,
training=False,
trainable=None,
seq_len=None):
"""Build the model from config file.
:param config_file: The path to the JSON configuration file.
:param training: If training, the whole model will be returned.
:param trainable: Whether the model is trainable.
:param seq_len: If it is not None and it is shorter than the value in the config file, the weights in
position embeddings will be sliced to fit the new length.
:return: model and config
"""
with open(config_file, 'r') as reader:
config = json.loads(reader.read())
if seq_len is not None:
config['max_position_embeddings'] = min(
seq_len, config['max_position_embeddings'])
if trainable is None:
trainable = training
model = get_model(
token_num=config['vocab_size'],
pos_num=config['max_position_embeddings'],
seq_len=config['max_position_embeddings'],
embed_dim=config['hidden_size'],
transformer_num=config['num_hidden_layers'],
head_num=config['num_attention_heads'],
feed_forward_dim=config['intermediate_size'],
training=training,
trainable=trainable,
)
model.build(input_shape=[(None, None), (None, None), (None, None)])
return model, config
def load_model_weights_from_checkpoint(model,
config,
checkpoint_file,
training=False):
"""Load trained official model from checkpoint.
:param model: Built keras model.
:param config: Loaded configuration file.
:param checkpoint_file: The path to the checkpoint files, should end with '.ckpt'.
:param training: If training, the whole model will be returned.
Otherwise, the MLM and NSP parts will be ignored.
"""
loader = checkpoint_loader(checkpoint_file)
model.get_layer(name='Embedding-Token').set_weights([
loader('bert/embeddings/word_embeddings'),
])
model.get_layer(name='Embedding-Position').set_weights([
loader(
'bert/embeddings/position_embeddings')[:config['max_position_embeddings'], :],
])
model.get_layer(name='Embedding-Segment').set_weights([
loader('bert/embeddings/token_type_embeddings'),
])
model.get_layer(name='Embedding-Norm').set_weights([
loader('bert/embeddings/LayerNorm/gamma'),
loader('bert/embeddings/LayerNorm/beta'),
])
for i in range(config['num_hidden_layers']):
model.get_layer(name='Encoder-%d-MultiHeadSelfAttention' % (i + 1)).set_weights([
loader('bert/encoder/layer_%d/attention/self/query/kernel' % i),
loader('bert/encoder/layer_%d/attention/self/query/bias' % i),
loader('bert/encoder/layer_%d/attention/self/key/kernel' % i),
loader('bert/encoder/layer_%d/attention/self/key/bias' % i),
loader('bert/encoder/layer_%d/attention/self/value/kernel' % i),
loader('bert/encoder/layer_%d/attention/self/value/bias' % i),
loader('bert/encoder/layer_%d/attention/output/dense/kernel' % i),
loader('bert/encoder/layer_%d/attention/output/dense/bias' % i),
])
model.get_layer(name='Encoder-%d-MultiHeadSelfAttention-Norm' % (i + 1)).set_weights([
loader('bert/encoder/layer_%d/attention/output/LayerNorm/gamma' % i),
loader('bert/encoder/layer_%d/attention/output/LayerNorm/beta' % i),
])
model.get_layer(name='Encoder-%d-MultiHeadSelfAttention-Norm' % (i + 1)).set_weights([
loader('bert/encoder/layer_%d/attention/output/LayerNorm/gamma' % i),
loader('bert/encoder/layer_%d/attention/output/LayerNorm/beta' % i),
])
model.get_layer(name='Encoder-%d-FeedForward' % (i + 1)).set_weights([
loader('bert/encoder/layer_%d/intermediate/dense/kernel' % i),
loader('bert/encoder/layer_%d/intermediate/dense/bias' % i),
loader('bert/encoder/layer_%d/output/dense/kernel' % i),
loader('bert/encoder/layer_%d/output/dense/bias' % i),
])
model.get_layer(name='Encoder-%d-FeedForward-Norm' % (i + 1)).set_weights([
loader('bert/encoder/layer_%d/output/LayerNorm/gamma' % i),
loader('bert/encoder/layer_%d/output/LayerNorm/beta' % i),
])
if training:
model.get_layer(name='MLM-Dense').set_weights([
loader('cls/predictions/transform/dense/kernel'),
loader('cls/predictions/transform/dense/bias'),
])
model.get_layer(name='MLM-Norm').set_weights([
loader('cls/predictions/transform/LayerNorm/gamma'),
loader('cls/predictions/transform/LayerNorm/beta'),
])
model.get_layer(name='MLM-Sim').set_weights([
loader('cls/predictions/output_bias'),
])
model.get_layer(name='NSP-Dense').set_weights([
loader('bert/pooler/dense/kernel'),
loader('bert/pooler/dense/bias'),
])
model.get_layer(name='NSP').set_weights([
np.transpose(loader('cls/seq_relationship/output_weights')),
loader('cls/seq_relationship/output_bias'),
])
def load_trained_model_from_checkpoint(config_file,
checkpoint_file,
training=False,
trainable=None,
seq_len=None):
"""Load trained official model from checkpoint.
:param config_file: The path to the JSON configuration file.
:param checkpoint_file: The path to the checkpoint files, should end with '.ckpt'.
:param training: If training, the whole model will be returned.
Otherwise, the MLM and NSP parts will be ignored.
:param trainable: Whether the model is trainable. The default value is the same with `training`.
:param seq_len: If it is not None and it is shorter than the value in the config file, the weights in
position embeddings will be sliced to fit the new length.
:return: model
"""
model, config = build_model_from_config(
config_file, training=training, trainable=trainable, seq_len=seq_len)
load_model_weights_from_checkpoint(
model, config, checkpoint_file, training=training)
return model