[51873b]: / docproduct / dataset.py

Download this file

370 lines (303 with data), 13.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
from glob import glob
from tqdm import tqdm
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
SEED = 42
def _float_list_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_list_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def create_generator_for_ffn(
file_list,
mode='train'):
# file_list = glob(os.path.join(data_dir, '*.csv'))
for full_file_path in file_list:
# full_file_path = os.path.join(data_dir, file_name)
if not os.path.exists(full_file_path):
raise FileNotFoundError("File %s not found" % full_file_path)
df = pd.read_csv(full_file_path, encoding='utf8')
# so train test split
if mode == 'train':
df, _ = train_test_split(df, test_size=0.2, random_state=SEED)
else:
_, df = train_test_split(df, test_size=0.2, random_state=SEED)
for _, row in df.iterrows():
q_vectors = np.fromstring(row.question_bert.replace(
'[[', '').replace(']]', ''), sep=' ')
a_vectors = np.fromstring(row.answer_bert.replace(
'[[', '').replace(']]', ''), sep=' ')
vectors = np.stack([q_vectors, a_vectors], axis=0)
if mode in ['train', 'eval']:
yield vectors, 1
else:
yield vectors
def ffn_serialize_fn(features):
features_tuple = {'features': _float_list_feature(
features[0].flatten()), 'labels': _int64_feature(features[1])}
example_proto = tf.train.Example(
features=tf.train.Features(feature=features_tuple))
return example_proto.SerializeToString()
def make_tfrecord(data_dir, generator_fn, serialize_fn, suffix='', **kwargs):
"""Function to make TF Records from csv files
This function will take all csv files in data_dir, convert them
to tf example and write to *_{suffix}_train/eval.tfrecord to data_dir.
Arguments:
data_dir {str} -- dir that has csv files and store tf record
generator_fn {fn} -- A function that takes a list of filepath and yield the
parsed recored from file.
serialize_fn {fn} -- A function that takes output of generator fn and convert to tf example
Keyword Arguments:
suffix {str} -- suffix to add to tf record files (default: {''})
"""
file_list = glob(os.path.join(data_dir, '*.csv'))
train_tf_record_file_list = [
f.replace('.csv', '_{0}_train.tfrecord'.format(suffix)) for f in file_list]
test_tf_record_file_list = [
f.replace('.csv', '_{0}_eval.tfrecord'.format(suffix)) for f in file_list]
for full_file_path, train_tf_record_file_path, test_tf_record_file_path in zip(file_list, train_tf_record_file_list, test_tf_record_file_list):
print('Converting file {0} to TF Record'.format(full_file_path))
with tf.io.TFRecordWriter(train_tf_record_file_path) as writer:
for features in generator_fn([full_file_path], mode='train', **kwargs):
example = serialize_fn(features)
writer.write(example)
with tf.io.TFRecordWriter(test_tf_record_file_path) as writer:
for features in generator_fn([full_file_path], mode='eval', **kwargs):
example = serialize_fn(features)
writer.write(example)
def create_dataset_for_ffn(
data_dir,
mode='train',
hidden_size=768,
shuffle_buffer=10000,
prefetch=10000,
batch_size=32):
tfrecord_file_list = glob(os.path.join(
data_dir, '*_FFN_{0}.tfrecord'.format((mode))))
if not tfrecord_file_list:
print('TF Record not found')
make_tfrecord(
data_dir, create_generator_for_ffn,
ffn_serialize_fn, 'FFN')
dataset = tf.data.TFRecordDataset(tfrecord_file_list)
def _parse_ffn_example(example_proto):
feature_description = {
'features': tf.io.FixedLenFeature([2*768], tf.float32),
'labels': tf.io.FixedLenFeature([], tf.int64, default_value=0),
}
feature_dict = tf.io.parse_single_example(
example_proto, feature_description)
return tf.reshape(feature_dict['features'], (2, 768)), feature_dict['labels']
dataset = dataset.map(_parse_ffn_example)
if mode == 'train':
dataset = dataset.shuffle(shuffle_buffer)
dataset = dataset.prefetch(prefetch)
dataset = dataset.batch(batch_size)
return dataset
class PaddingInputExample(object):
"""Fake example so the num input examples is a multiple of the batch size.
When running eval/predict on the TPU, we need to pad the number of examples
to be a multiple of the batch size, because the TPU requires a fixed batch
size. The alternative is to drop the last batch, which is bad because it means
the entire output data won't be generated.
We use this class instead of `None` because treating `None` as padding
battches could cause silent errors.
"""
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
def convert_single_example(tokenizer, example, max_seq_length=256, dynamic_padding=False):
"""Converts a single `InputExample` into a single `InputFeatures`."""
if isinstance(example, PaddingInputExample):
input_ids = [0] * max_seq_length
input_mask = [0] * max_seq_length
segment_ids = [0] * max_seq_length
label = 0
return input_ids, input_mask, segment_ids, label
tokens_a = tokenizer.tokenize(example.text_a)
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0: (max_seq_length - 2)]
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
if not dynamic_padding:
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
return input_ids, input_mask, segment_ids, example.label
def convert_examples_to_features(tokenizer, examples, max_seq_length=256, dynamic_padding=False):
"""Convert a set of `InputExample`s to a list of `InputFeatures`."""
input_ids, input_masks, segment_ids, labels = [], [], [], []
for example in examples:
input_id, input_mask, segment_id, label = convert_single_example(
tokenizer, example, max_seq_length, dynamic_padding=dynamic_padding
)
input_ids.append(input_id)
input_masks.append(input_mask)
segment_ids.append(segment_id)
labels.append(label)
return (
np.squeeze(np.array(input_ids)),
np.squeeze(np.array(input_masks)),
np.squeeze(np.array(segment_ids)),
np.array(labels).reshape(-1, 1),
)
def convert_text_to_feature(text, tokenizer, max_seq_length, dynamic_padding=False):
example = InputExample(
guid=None, text_a=text)
features = convert_examples_to_features(
tokenizer, [example], max_seq_length, dynamic_padding=dynamic_padding)
return features
def create_generator_for_bert(
file_list,
tokenizer,
mode='train',
max_seq_length=256,
dynamic_padding=False):
# file_list = glob(os.path.join(data_dir, '*.csv'))
for full_file_path in file_list:
# full_file_path = os.path.join(data_dir, file_name)
if not os.path.exists(full_file_path):
raise FileNotFoundError("File %s not found" % full_file_path)
if os.path.basename(full_file_path) == 'healthtap_data_cleaned.csv':
df = pd.read_csv(full_file_path, lineterminator='\n')
df.columns = ['index', 'question', 'answer']
df.drop(columns=['index'], inplace=True)
else:
df = pd.read_csv(full_file_path, lineterminator='\n')
# so train test split
if mode == 'train':
df, _ = train_test_split(df, test_size=0.2, random_state=SEED)
else:
_, df = train_test_split(df, test_size=0.2, random_state=SEED)
for _, row in tqdm(df.iterrows(), total=df.shape[0], desc='Writing to TFRecord'):
try:
q_features = convert_text_to_feature(
row.question, tokenizer, max_seq_length, dynamic_padding=dynamic_padding)
except (ValueError, AttributeError):
continue
# no labels
q_features = q_features[:3]
try:
a_features = convert_text_to_feature(
row.answer, tokenizer, max_seq_length, dynamic_padding=dynamic_padding)
except (ValueError, AttributeError):
continue
a_features = a_features[:3]
yield (q_features+a_features, 1)
def _qa_ele_to_length(features, labels):
return tf.shape(features['q_input_ids'])[0] + tf.shape(features['a_input_ids'])[0]
def bert_serialize_fn(features):
feature, labels = features
# feature = [_int64_feature(f.flatten()) for f in feature]
# labels = _int64_feature(labels)
# features_tuple = (feature, labels)
features_tuple = {
'q_input_ids': _int64_list_feature(
feature[0].flatten()),
'q_input_masks': _int64_list_feature(
feature[1].flatten()),
'q_segment_ids': _int64_list_feature(
feature[2].flatten()),
'q_input_shape': _int64_list_feature(
feature[0].shape),
'a_input_ids': _int64_list_feature(
feature[3].flatten()),
'a_input_masks': _int64_list_feature(
feature[4].flatten()),
'a_segment_ids': _int64_list_feature(
feature[5].flatten()),
'a_input_shape': _int64_list_feature(
feature[3].shape),
'labels': _int64_feature(labels)}
example_proto = tf.train.Example(
features=tf.train.Features(feature=features_tuple))
return example_proto.SerializeToString()
def create_dataset_for_bert(
data_dir,
tokenizer=None,
mode='train',
max_seq_length=256,
shuffle_buffer=10000,
prefetch=10000,
batch_size=32,
dynamic_padding=False,
bucket_batch_sizes=[32, 16, 8],
bucket_boundaries=[64, 128],
element_length_func=_qa_ele_to_length):
tfrecord_file_list = glob(os.path.join(
data_dir, '*_BertFFN_{0}.tfrecord'.format((mode))))
if not tfrecord_file_list:
print('TF Record not found')
make_tfrecord(
data_dir, create_generator_for_bert,
bert_serialize_fn, 'BertFFN', tokenizer=tokenizer, dynamic_padding=True, max_seq_length=max_seq_length)
tfrecord_file_list = glob(os.path.join(
data_dir, '*_BertFFN_{0}.tfrecord'.format((mode))))
dataset = tf.data.TFRecordDataset(tfrecord_file_list)
def _parse_bert_example(example_proto):
feature_description = {
'q_input_ids': tf.io.VarLenFeature(tf.int64),
'q_input_masks': tf.io.VarLenFeature(tf.int64),
'q_segment_ids': tf.io.VarLenFeature(tf.int64),
'a_input_ids': tf.io.VarLenFeature(tf.int64),
'a_input_masks': tf.io.VarLenFeature(tf.int64),
'a_segment_ids': tf.io.VarLenFeature(tf.int64),
'labels': tf.io.FixedLenFeature([], tf.int64, default_value=0),
}
feature_dict = tf.io.parse_single_example(
example_proto, feature_description)
dense_feature_dict = {k: tf.sparse.to_dense(
v) for k, v in feature_dict.items() if k != 'labels'}
dense_feature_dict['labels'] = feature_dict['labels']
return dense_feature_dict, feature_dict['labels']
dataset = dataset.map(_parse_bert_example)
if mode == 'train':
dataset = dataset.shuffle(shuffle_buffer)
if dynamic_padding:
dataset = dataset.apply(
tf.data.experimental.bucket_by_sequence_length(
element_length_func=element_length_func,
bucket_batch_sizes=bucket_batch_sizes,
bucket_boundaries=bucket_boundaries
))
else:
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(prefetch)
return dataset