|
a |
|
b/keras_bert/loader.py |
|
|
1 |
import json |
|
|
2 |
from tensorflow import keras |
|
|
3 |
import numpy as np |
|
|
4 |
import tensorflow as tf |
|
|
5 |
from .bert import get_model |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
__all__ = [ |
|
|
9 |
'build_model_from_config', |
|
|
10 |
'load_model_weights_from_checkpoint', |
|
|
11 |
'load_trained_model_from_checkpoint', |
|
|
12 |
] |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def checkpoint_loader(checkpoint_file): |
|
|
16 |
def _loader(name): |
|
|
17 |
return tf.train.load_variable(checkpoint_file, name) |
|
|
18 |
return _loader |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
def build_model_from_config(config_file, |
|
|
22 |
training=False, |
|
|
23 |
trainable=None, |
|
|
24 |
seq_len=None): |
|
|
25 |
"""Build the model from config file. |
|
|
26 |
|
|
|
27 |
:param config_file: The path to the JSON configuration file. |
|
|
28 |
:param training: If training, the whole model will be returned. |
|
|
29 |
:param trainable: Whether the model is trainable. |
|
|
30 |
:param seq_len: If it is not None and it is shorter than the value in the config file, the weights in |
|
|
31 |
position embeddings will be sliced to fit the new length. |
|
|
32 |
:return: model and config |
|
|
33 |
""" |
|
|
34 |
with open(config_file, 'r') as reader: |
|
|
35 |
config = json.loads(reader.read()) |
|
|
36 |
if seq_len is not None: |
|
|
37 |
config['max_position_embeddings'] = min( |
|
|
38 |
seq_len, config['max_position_embeddings']) |
|
|
39 |
if trainable is None: |
|
|
40 |
trainable = training |
|
|
41 |
|
|
|
42 |
model = get_model( |
|
|
43 |
token_num=config['vocab_size'], |
|
|
44 |
pos_num=config['max_position_embeddings'], |
|
|
45 |
seq_len=config['max_position_embeddings'], |
|
|
46 |
embed_dim=config['hidden_size'], |
|
|
47 |
transformer_num=config['num_hidden_layers'], |
|
|
48 |
head_num=config['num_attention_heads'], |
|
|
49 |
feed_forward_dim=config['intermediate_size'], |
|
|
50 |
training=training, |
|
|
51 |
trainable=trainable, |
|
|
52 |
) |
|
|
53 |
model.build(input_shape=[(None, None), (None, None), (None, None)]) |
|
|
54 |
return model, config |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
def load_model_weights_from_checkpoint(model, |
|
|
58 |
config, |
|
|
59 |
checkpoint_file, |
|
|
60 |
training=False): |
|
|
61 |
"""Load trained official model from checkpoint. |
|
|
62 |
|
|
|
63 |
:param model: Built keras model. |
|
|
64 |
:param config: Loaded configuration file. |
|
|
65 |
:param checkpoint_file: The path to the checkpoint files, should end with '.ckpt'. |
|
|
66 |
:param training: If training, the whole model will be returned. |
|
|
67 |
Otherwise, the MLM and NSP parts will be ignored. |
|
|
68 |
""" |
|
|
69 |
loader = checkpoint_loader(checkpoint_file) |
|
|
70 |
|
|
|
71 |
model.get_layer(name='Embedding-Token').set_weights([ |
|
|
72 |
loader('bert/embeddings/word_embeddings'), |
|
|
73 |
]) |
|
|
74 |
model.get_layer(name='Embedding-Position').set_weights([ |
|
|
75 |
loader( |
|
|
76 |
'bert/embeddings/position_embeddings')[:config['max_position_embeddings'], :], |
|
|
77 |
]) |
|
|
78 |
model.get_layer(name='Embedding-Segment').set_weights([ |
|
|
79 |
loader('bert/embeddings/token_type_embeddings'), |
|
|
80 |
]) |
|
|
81 |
model.get_layer(name='Embedding-Norm').set_weights([ |
|
|
82 |
loader('bert/embeddings/LayerNorm/gamma'), |
|
|
83 |
loader('bert/embeddings/LayerNorm/beta'), |
|
|
84 |
]) |
|
|
85 |
for i in range(config['num_hidden_layers']): |
|
|
86 |
model.get_layer(name='Encoder-%d-MultiHeadSelfAttention' % (i + 1)).set_weights([ |
|
|
87 |
loader('bert/encoder/layer_%d/attention/self/query/kernel' % i), |
|
|
88 |
loader('bert/encoder/layer_%d/attention/self/query/bias' % i), |
|
|
89 |
loader('bert/encoder/layer_%d/attention/self/key/kernel' % i), |
|
|
90 |
loader('bert/encoder/layer_%d/attention/self/key/bias' % i), |
|
|
91 |
loader('bert/encoder/layer_%d/attention/self/value/kernel' % i), |
|
|
92 |
loader('bert/encoder/layer_%d/attention/self/value/bias' % i), |
|
|
93 |
loader('bert/encoder/layer_%d/attention/output/dense/kernel' % i), |
|
|
94 |
loader('bert/encoder/layer_%d/attention/output/dense/bias' % i), |
|
|
95 |
]) |
|
|
96 |
model.get_layer(name='Encoder-%d-MultiHeadSelfAttention-Norm' % (i + 1)).set_weights([ |
|
|
97 |
loader('bert/encoder/layer_%d/attention/output/LayerNorm/gamma' % i), |
|
|
98 |
loader('bert/encoder/layer_%d/attention/output/LayerNorm/beta' % i), |
|
|
99 |
]) |
|
|
100 |
model.get_layer(name='Encoder-%d-MultiHeadSelfAttention-Norm' % (i + 1)).set_weights([ |
|
|
101 |
loader('bert/encoder/layer_%d/attention/output/LayerNorm/gamma' % i), |
|
|
102 |
loader('bert/encoder/layer_%d/attention/output/LayerNorm/beta' % i), |
|
|
103 |
]) |
|
|
104 |
model.get_layer(name='Encoder-%d-FeedForward' % (i + 1)).set_weights([ |
|
|
105 |
loader('bert/encoder/layer_%d/intermediate/dense/kernel' % i), |
|
|
106 |
loader('bert/encoder/layer_%d/intermediate/dense/bias' % i), |
|
|
107 |
loader('bert/encoder/layer_%d/output/dense/kernel' % i), |
|
|
108 |
loader('bert/encoder/layer_%d/output/dense/bias' % i), |
|
|
109 |
]) |
|
|
110 |
model.get_layer(name='Encoder-%d-FeedForward-Norm' % (i + 1)).set_weights([ |
|
|
111 |
loader('bert/encoder/layer_%d/output/LayerNorm/gamma' % i), |
|
|
112 |
loader('bert/encoder/layer_%d/output/LayerNorm/beta' % i), |
|
|
113 |
]) |
|
|
114 |
if training: |
|
|
115 |
model.get_layer(name='MLM-Dense').set_weights([ |
|
|
116 |
loader('cls/predictions/transform/dense/kernel'), |
|
|
117 |
loader('cls/predictions/transform/dense/bias'), |
|
|
118 |
]) |
|
|
119 |
model.get_layer(name='MLM-Norm').set_weights([ |
|
|
120 |
loader('cls/predictions/transform/LayerNorm/gamma'), |
|
|
121 |
loader('cls/predictions/transform/LayerNorm/beta'), |
|
|
122 |
]) |
|
|
123 |
model.get_layer(name='MLM-Sim').set_weights([ |
|
|
124 |
loader('cls/predictions/output_bias'), |
|
|
125 |
]) |
|
|
126 |
model.get_layer(name='NSP-Dense').set_weights([ |
|
|
127 |
loader('bert/pooler/dense/kernel'), |
|
|
128 |
loader('bert/pooler/dense/bias'), |
|
|
129 |
]) |
|
|
130 |
model.get_layer(name='NSP').set_weights([ |
|
|
131 |
np.transpose(loader('cls/seq_relationship/output_weights')), |
|
|
132 |
loader('cls/seq_relationship/output_bias'), |
|
|
133 |
]) |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
def load_trained_model_from_checkpoint(config_file, |
|
|
137 |
checkpoint_file, |
|
|
138 |
training=False, |
|
|
139 |
trainable=None, |
|
|
140 |
seq_len=None): |
|
|
141 |
"""Load trained official model from checkpoint. |
|
|
142 |
|
|
|
143 |
:param config_file: The path to the JSON configuration file. |
|
|
144 |
:param checkpoint_file: The path to the checkpoint files, should end with '.ckpt'. |
|
|
145 |
:param training: If training, the whole model will be returned. |
|
|
146 |
Otherwise, the MLM and NSP parts will be ignored. |
|
|
147 |
:param trainable: Whether the model is trainable. The default value is the same with `training`. |
|
|
148 |
:param seq_len: If it is not None and it is shorter than the value in the config file, the weights in |
|
|
149 |
position embeddings will be sliced to fit the new length. |
|
|
150 |
:return: model |
|
|
151 |
""" |
|
|
152 |
model, config = build_model_from_config( |
|
|
153 |
config_file, training=training, trainable=trainable, seq_len=seq_len) |
|
|
154 |
load_model_weights_from_checkpoint( |
|
|
155 |
model, config, checkpoint_file, training=training) |
|
|
156 |
return model |