--- a
+++ b/docproduct/tokenization.py
@@ -0,0 +1,394 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import collections
+import re
+import unicodedata
+import six
+import tensorflow as tf
+
+
+def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
+    """Checks whether the casing config is consistent with the checkpoint name."""
+
+    # The casing has to be passed in by the user and there is no explicit check
+    # as to whether it matches the checkpoint. The casing information probably
+    # should have been stored in the bert_config.json file, but it's not, so
+    # we have to heuristically detect it to validate.
+
+    if not init_checkpoint:
+        return
+
+    m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
+    if m is None:
+        return
+
+    model_name = m.group(1)
+
+    lower_models = [
+        "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
+        "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
+    ]
+
+    cased_models = [
+        "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
+        "multi_cased_L-12_H-768_A-12"
+    ]
+
+    is_bad_config = False
+    if model_name in lower_models and not do_lower_case:
+        is_bad_config = True
+        actual_flag = "False"
+        case_name = "lowercased"
+        opposite_flag = "True"
+
+    if model_name in cased_models and do_lower_case:
+        is_bad_config = True
+        actual_flag = "True"
+        case_name = "cased"
+        opposite_flag = "False"
+
+    if is_bad_config:
+        raise ValueError(
+            "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
+            "However, `%s` seems to be a %s model, so you "
+            "should pass in `--do_lower_case=%s` so that the fine-tuning matches "
+            "how the model was pre-training. If this error is wrong, please "
+            "just comment out this check." % (actual_flag, init_checkpoint,
+                                              model_name, case_name, opposite_flag))
+
+
+def convert_to_unicode(text):
+    """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
+    if six.PY3:
+        if isinstance(text, str):
+            return text
+        elif isinstance(text, bytes):
+            return text.decode("utf-8", "ignore")
+        else:
+            raise ValueError("Unsupported string type: %s" % (type(text)))
+    elif six.PY2:
+        if isinstance(text, str):
+            return text.decode("utf-8", "ignore")
+        elif isinstance(text, unicode):
+            return text
+        else:
+            raise ValueError("Unsupported string type: %s" % (type(text)))
+    else:
+        raise ValueError("Not running on Python2 or Python 3?")
+
+
+def printable_text(text):
+    """Returns text encoded in a way suitable for print or `tf.logging`."""
+
+    # These functions want `str` for both Python2 and Python3, but in one case
+    # it's a Unicode string and in the other it's a byte string.
+    if six.PY3:
+        if isinstance(text, str):
+            return text
+        elif isinstance(text, bytes):
+            return text.decode("utf-8", "ignore")
+        else:
+            raise ValueError("Unsupported string type: %s" % (type(text)))
+    elif six.PY2:
+        if isinstance(text, str):
+            return text
+        elif isinstance(text, unicode):
+            return text.encode("utf-8")
+        else:
+            raise ValueError("Unsupported string type: %s" % (type(text)))
+    else:
+        raise ValueError("Not running on Python2 or Python 3?")
+
+
+def load_vocab(vocab_file):
+    """Loads a vocabulary file into a dictionary."""
+    vocab = collections.OrderedDict()
+    index = 0
+    with open(vocab_file, "r", encoding='utf-8') as reader:
+        while True:
+            token = convert_to_unicode(reader.readline())
+            if not token:
+                break
+            token = token.strip()
+            vocab[token] = index
+            index += 1
+    return vocab
+
+
+def convert_by_vocab(vocab, items):
+    """Converts a sequence of [tokens|ids] using the vocab."""
+    output = []
+    for item in items:
+        output.append(vocab[item])
+    return output
+
+
+def convert_tokens_to_ids(vocab, tokens):
+    return convert_by_vocab(vocab, tokens)
+
+
+def convert_ids_to_tokens(inv_vocab, ids):
+    return convert_by_vocab(inv_vocab, ids)
+
+
+def whitespace_tokenize(text):
+    """Runs basic whitespace cleaning and splitting on a piece of text."""
+    text = text.strip()
+    if not text:
+        return []
+    tokens = text.split()
+    return tokens
+
+
+class FullTokenizer(object):
+    """Runs end-to-end tokenziation."""
+
+    def __init__(self, vocab_file, do_lower_case=True):
+        self.vocab = load_vocab(vocab_file)
+        self.inv_vocab = {v: k for k, v in self.vocab.items()}
+        self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
+        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
+
+    def tokenize(self, text):
+        split_tokens = []
+        for token in self.basic_tokenizer.tokenize(text):
+            for sub_token in self.wordpiece_tokenizer.tokenize(token):
+                split_tokens.append(sub_token)
+
+        return split_tokens
+
+    def convert_tokens_to_ids(self, tokens):
+        return convert_by_vocab(self.vocab, tokens)
+
+    def convert_ids_to_tokens(self, ids):
+        return convert_by_vocab(self.inv_vocab, ids)
+
+
+class BasicTokenizer(object):
+    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
+
+    def __init__(self, do_lower_case=True):
+        """Constructs a BasicTokenizer.
+        Args:
+          do_lower_case: Whether to lower case the input.
+        """
+        self.do_lower_case = do_lower_case
+
+    def tokenize(self, text):
+        """Tokenizes a piece of text."""
+        text = convert_to_unicode(text)
+        text = self._clean_text(text)
+
+        # This was added on November 1st, 2018 for the multilingual and Chinese
+        # models. This is also applied to the English models now, but it doesn't
+        # matter since the English models were not trained on any Chinese data
+        # and generally don't have any Chinese data in them (there are Chinese
+        # characters in the vocabulary because Wikipedia does have some Chinese
+        # words in the English Wikipedia.).
+        text = self._tokenize_chinese_chars(text)
+
+        orig_tokens = whitespace_tokenize(text)
+        split_tokens = []
+        for token in orig_tokens:
+            if self.do_lower_case:
+                token = token.lower()
+                token = self._run_strip_accents(token)
+            split_tokens.extend(self._run_split_on_punc(token))
+
+        output_tokens = whitespace_tokenize(" ".join(split_tokens))
+        return output_tokens
+
+    def _run_strip_accents(self, text):
+        """Strips accents from a piece of text."""
+        text = unicodedata.normalize("NFD", text)
+        output = []
+        for char in text:
+            cat = unicodedata.category(char)
+            if cat == "Mn":
+                continue
+            output.append(char)
+        return "".join(output)
+
+    def _run_split_on_punc(self, text):
+        """Splits punctuation on a piece of text."""
+        chars = list(text)
+        i = 0
+        start_new_word = True
+        output = []
+        while i < len(chars):
+            char = chars[i]
+            if _is_punctuation(char):
+                output.append([char])
+                start_new_word = True
+            else:
+                if start_new_word:
+                    output.append([])
+                start_new_word = False
+                output[-1].append(char)
+            i += 1
+
+        return ["".join(x) for x in output]
+
+    def _tokenize_chinese_chars(self, text):
+        """Adds whitespace around any CJK character."""
+        output = []
+        for char in text:
+            cp = ord(char)
+            if self._is_chinese_char(cp):
+                output.append(" ")
+                output.append(char)
+                output.append(" ")
+            else:
+                output.append(char)
+        return "".join(output)
+
+    def _is_chinese_char(self, cp):
+        """Checks whether CP is the codepoint of a CJK character."""
+        # This defines a "chinese character" as anything in the CJK Unicode block:
+        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+        #
+        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+        # despite its name. The modern Korean Hangul alphabet is a different block,
+        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+        # space-separated words, so they are not treated specially and handled
+        # like the all of the other languages.
+        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
+            (cp >= 0x3400 and cp <= 0x4DBF) or  #
+            (cp >= 0x20000 and cp <= 0x2A6DF) or  #
+            (cp >= 0x2A700 and cp <= 0x2B73F) or  #
+            (cp >= 0x2B740 and cp <= 0x2B81F) or  #
+            (cp >= 0x2B820 and cp <= 0x2CEAF) or
+            (cp >= 0xF900 and cp <= 0xFAFF) or  #
+                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
+            return True
+
+        return False
+
+    def _clean_text(self, text):
+        """Performs invalid character removal and whitespace cleanup on text."""
+        output = []
+        for char in text:
+            cp = ord(char)
+            if cp == 0 or cp == 0xfffd or _is_control(char):
+                continue
+            if _is_whitespace(char):
+                output.append(" ")
+            else:
+                output.append(char)
+        return "".join(output)
+
+
+class WordpieceTokenizer(object):
+    """Runs WordPiece tokenziation."""
+
+    def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
+        self.vocab = vocab
+        self.unk_token = unk_token
+        self.max_input_chars_per_word = max_input_chars_per_word
+
+    def tokenize(self, text):
+        """Tokenizes a piece of text into its word pieces.
+        This uses a greedy longest-match-first algorithm to perform tokenization
+        using the given vocabulary.
+        For example:
+          input = "unaffable"
+          output = ["un", "##aff", "##able"]
+        Args:
+          text: A single token or whitespace separated tokens. This should have
+            already been passed through `BasicTokenizer.
+        Returns:
+          A list of wordpiece tokens.
+        """
+
+        text = convert_to_unicode(text)
+
+        output_tokens = []
+        for token in whitespace_tokenize(text):
+            chars = list(token)
+            if len(chars) > self.max_input_chars_per_word:
+                output_tokens.append(self.unk_token)
+                continue
+
+            is_bad = False
+            start = 0
+            sub_tokens = []
+            while start < len(chars):
+                end = len(chars)
+                cur_substr = None
+                while start < end:
+                    substr = "".join(chars[start:end])
+                    if start > 0:
+                        substr = "##" + substr
+                    if substr in self.vocab:
+                        cur_substr = substr
+                        break
+                    end -= 1
+                if cur_substr is None:
+                    is_bad = True
+                    break
+                sub_tokens.append(cur_substr)
+                start = end
+
+            if is_bad:
+                output_tokens.append(self.unk_token)
+            else:
+                output_tokens.extend(sub_tokens)
+        return output_tokens
+
+
+def _is_whitespace(char):
+    """Checks whether `chars` is a whitespace character."""
+    # \t, \n, and \r are technically contorl characters but we treat them
+    # as whitespace since they are generally considered as such.
+    if char == " " or char == "\t" or char == "\n" or char == "\r":
+        return True
+    cat = unicodedata.category(char)
+    if cat == "Zs":
+        return True
+    return False
+
+
+def _is_control(char):
+    """Checks whether `chars` is a control character."""
+    # These are technically control characters but we count them as whitespace
+    # characters.
+    if char == "\t" or char == "\n" or char == "\r":
+        return False
+    cat = unicodedata.category(char)
+    if cat in ("Cc", "Cf"):
+        return True
+    return False
+
+
+def _is_punctuation(char):
+    """Checks whether `chars` is a punctuation character."""
+    cp = ord(char)
+    # We treat all non-letter/number ASCII as punctuation.
+    # Characters such as "^", "$", and "`" are not in the Unicode
+    # Punctuation class but we treat them as punctuation anyways, for
+    # consistency.
+    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
+            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
+        return True
+    cat = unicodedata.category(char)
+    if cat.startswith("P"):
+        return True
+    return False