|
a |
|
b/docproduct/bert.py |
|
|
1 |
import json |
|
|
2 |
|
|
|
3 |
import tensorflow as tf |
|
|
4 |
from tensorflow import keras |
|
|
5 |
import tensorflow.keras.backend as K |
|
|
6 |
|
|
|
7 |
from keras_bert.keras_pos_embd import PositionEmbedding |
|
|
8 |
from keras_bert.layers import get_inputs, get_embedding, TokenEmbedding, EmbeddingSimilarity, Masked, Extract |
|
|
9 |
from keras_bert.keras_layer_normalization import LayerNormalization |
|
|
10 |
from keras_bert.keras_multi_head import MultiHeadAttention |
|
|
11 |
from keras_bert.keras_position_wise_feed_forward import FeedForward |
|
|
12 |
|
|
|
13 |
def gelu(x): |
|
|
14 |
return 0.5 * x * (1.0 + tf.math.erf(x / tf.sqrt(2.0))) |
|
|
15 |
|
|
|
16 |
class Bert(keras.Model): |
|
|
17 |
def __init__( |
|
|
18 |
self, |
|
|
19 |
token_num, |
|
|
20 |
pos_num=512, |
|
|
21 |
seq_len=512, |
|
|
22 |
embed_dim=768, |
|
|
23 |
transformer_num=12, |
|
|
24 |
head_num=12, |
|
|
25 |
feed_forward_dim=3072, |
|
|
26 |
dropout_rate=0.1, |
|
|
27 |
attention_activation=None, |
|
|
28 |
feed_forward_activation=gelu, |
|
|
29 |
custom_layers=None, |
|
|
30 |
training=True, |
|
|
31 |
trainable=None, |
|
|
32 |
lr=1e-4, |
|
|
33 |
name='Bert'): |
|
|
34 |
super().__init__(name=name) |
|
|
35 |
self.token_num = token_num |
|
|
36 |
self.pos_num = pos_num |
|
|
37 |
self.seq_len = seq_len |
|
|
38 |
self.embed_dim = embed_dim |
|
|
39 |
self.transformer_num = transformer_num |
|
|
40 |
self.head_num = head_num |
|
|
41 |
self.feed_forward_dim = feed_forward_dim |
|
|
42 |
self.dropout_rate = dropout_rate |
|
|
43 |
self.attention_activation = attention_activation |
|
|
44 |
self.feed_forward_activation = feed_forward_activation |
|
|
45 |
self.custom_layers = custom_layers |
|
|
46 |
self.training = training |
|
|
47 |
self.trainable = trainable |
|
|
48 |
self.lr = lr |
|
|
49 |
|
|
|
50 |
# build layers |
|
|
51 |
# embedding |
|
|
52 |
self.token_embedding_layer = TokenEmbedding( |
|
|
53 |
input_dim=token_num, |
|
|
54 |
output_dim=embed_dim, |
|
|
55 |
mask_zero=True, |
|
|
56 |
trainable=trainable, |
|
|
57 |
name='Embedding-Token', |
|
|
58 |
) |
|
|
59 |
self.segment_embedding_layer = keras.layers.Embedding( |
|
|
60 |
input_dim=2, |
|
|
61 |
output_dim=embed_dim, |
|
|
62 |
trainable=trainable, |
|
|
63 |
name='Embedding-Segment', |
|
|
64 |
) |
|
|
65 |
self.position_embedding_layer = PositionEmbedding( |
|
|
66 |
input_dim=pos_num, |
|
|
67 |
output_dim=embed_dim, |
|
|
68 |
mode=PositionEmbedding.MODE_ADD, |
|
|
69 |
trainable=trainable, |
|
|
70 |
name='Embedding-Position', |
|
|
71 |
) |
|
|
72 |
self.embedding_layer_norm = LayerNormalization( |
|
|
73 |
trainable=trainable, |
|
|
74 |
name='Embedding-Norm', |
|
|
75 |
) |
|
|
76 |
|
|
|
77 |
self.encoder_multihead_layers = [] |
|
|
78 |
self.encoder_ffn_layers = [] |
|
|
79 |
self.encoder_attention_norm = [] |
|
|
80 |
self.encoder_ffn_norm = [] |
|
|
81 |
# attention layers |
|
|
82 |
for i in range(transformer_num): |
|
|
83 |
base_name = 'Encoder-%d' % (i + 1) |
|
|
84 |
attention_name = '%s-MultiHeadSelfAttention' % base_name |
|
|
85 |
feed_forward_name = '%s-FeedForward' % base_name |
|
|
86 |
self.encoder_multihead_layers.append(MultiHeadAttention( |
|
|
87 |
head_num=head_num, |
|
|
88 |
activation=attention_activation, |
|
|
89 |
history_only=False, |
|
|
90 |
trainable=trainable, |
|
|
91 |
name=attention_name, |
|
|
92 |
)) |
|
|
93 |
self.encoder_ffn_layers.append(FeedForward( |
|
|
94 |
units=feed_forward_dim, |
|
|
95 |
activation=feed_forward_activation, |
|
|
96 |
trainable=trainable, |
|
|
97 |
name=feed_forward_name, |
|
|
98 |
)) |
|
|
99 |
self.encoder_attention_norm.append(LayerNormalization( |
|
|
100 |
trainable=trainable, |
|
|
101 |
name='%s-Norm' % attention_name, |
|
|
102 |
)) |
|
|
103 |
self.encoder_ffn_norm.append(LayerNormalization( |
|
|
104 |
trainable=trainable, |
|
|
105 |
name='%s-Norm' % feed_forward_name, |
|
|
106 |
)) |
|
|
107 |
|
|
|
108 |
def call(self, inputs): |
|
|
109 |
|
|
|
110 |
embeddings = [ |
|
|
111 |
self.token_embedding_layer(inputs[0]), |
|
|
112 |
self.segment_embedding_layer(inputs[1]) |
|
|
113 |
] |
|
|
114 |
embeddings[0], embed_weights = embeddings[0] |
|
|
115 |
embed_layer = keras.layers.Add( |
|
|
116 |
name='Embedding-Token-Segment')(embeddings) |
|
|
117 |
embed_layer = self.position_embedding_layer(embed_layer) |
|
|
118 |
|
|
|
119 |
if self.dropout_rate > 0.0: |
|
|
120 |
dropout_layer = keras.layers.Dropout( |
|
|
121 |
rate=self.dropout_rate, |
|
|
122 |
name='Embedding-Dropout', |
|
|
123 |
)(embed_layer) |
|
|
124 |
else: |
|
|
125 |
dropout_layer = embed_layer |
|
|
126 |
|
|
|
127 |
embedding_output = self.embedding_layer_norm(dropout_layer) |
|
|
128 |
|
|
|
129 |
def _wrap_layer(name, input_layer, build_func, norm_layer, dropout_rate=0.0, trainable=True): |
|
|
130 |
"""Wrap layers with residual, normalization and dropout. |
|
|
131 |
|
|
|
132 |
:param name: Prefix of names for internal layers. |
|
|
133 |
:param input_layer: Input layer. |
|
|
134 |
:param build_func: A callable that takes the input tensor and generates the output tensor. |
|
|
135 |
:param dropout_rate: Dropout rate. |
|
|
136 |
:param trainable: Whether the layers are trainable. |
|
|
137 |
:return: Output layer. |
|
|
138 |
""" |
|
|
139 |
build_output = build_func(input_layer) |
|
|
140 |
if dropout_rate > 0.0: |
|
|
141 |
dropout_layer = keras.layers.Dropout( |
|
|
142 |
rate=dropout_rate, |
|
|
143 |
name='%s-Dropout' % name, |
|
|
144 |
)(build_output) |
|
|
145 |
else: |
|
|
146 |
dropout_layer = build_output |
|
|
147 |
if isinstance(input_layer, list): |
|
|
148 |
input_layer = input_layer[0] |
|
|
149 |
add_layer = keras.layers.Add(name='%s-Add' % |
|
|
150 |
name)([input_layer, dropout_layer]) |
|
|
151 |
normal_layer = norm_layer(add_layer) |
|
|
152 |
return normal_layer |
|
|
153 |
|
|
|
154 |
last_layer = embedding_output |
|
|
155 |
output_tensor_list = [last_layer] |
|
|
156 |
# self attention |
|
|
157 |
for i in range(self.transformer_num): |
|
|
158 |
base_name = 'Encoder-%d' % (i + 1) |
|
|
159 |
attention_name = '%s-MultiHeadSelfAttention' % base_name |
|
|
160 |
feed_forward_name = '%s-FeedForward' % base_name |
|
|
161 |
self_attention_output = _wrap_layer( |
|
|
162 |
name=attention_name, |
|
|
163 |
input_layer=last_layer, |
|
|
164 |
build_func=self.encoder_multihead_layers[i], |
|
|
165 |
norm_layer=self.encoder_attention_norm[i], |
|
|
166 |
dropout_rate=self.dropout_rate, |
|
|
167 |
trainable=self.trainable) |
|
|
168 |
last_layer = _wrap_layer( |
|
|
169 |
name=attention_name, |
|
|
170 |
input_layer=self_attention_output, |
|
|
171 |
build_func=self.encoder_ffn_layers[i], |
|
|
172 |
norm_layer=self.encoder_ffn_norm[i], |
|
|
173 |
dropout_rate=self.dropout_rate, |
|
|
174 |
trainable=self.trainable) |
|
|
175 |
output_tensor_list.append(last_layer) |
|
|
176 |
|
|
|
177 |
return output_tensor_list |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
def build_model_from_config(config_file, |
|
|
181 |
training=False, |
|
|
182 |
trainable=None, |
|
|
183 |
seq_len=None, |
|
|
184 |
build=True): |
|
|
185 |
"""Build the model from config file. |
|
|
186 |
:param config_file: The path to the JSON configuration file. |
|
|
187 |
:param training: If training, the whole model will be returned. |
|
|
188 |
:param trainable: Whether the model is trainable. |
|
|
189 |
:param seq_len: If it is not None and it is shorter than the value in the config file, the weights in |
|
|
190 |
position embeddings will be sliced to fit the new length. |
|
|
191 |
:return: model and config |
|
|
192 |
""" |
|
|
193 |
with open(config_file, 'r') as reader: |
|
|
194 |
config = json.loads(reader.read()) |
|
|
195 |
if seq_len is not None: |
|
|
196 |
config['max_position_embeddings'] = min( |
|
|
197 |
seq_len, config['max_position_embeddings']) |
|
|
198 |
if trainable is None: |
|
|
199 |
trainable = training |
|
|
200 |
model = Bert( |
|
|
201 |
token_num=config['vocab_size'], |
|
|
202 |
pos_num=config['max_position_embeddings'], |
|
|
203 |
seq_len=config['max_position_embeddings'], |
|
|
204 |
embed_dim=config['hidden_size'], |
|
|
205 |
transformer_num=config['num_hidden_layers'], |
|
|
206 |
head_num=config['num_attention_heads'], |
|
|
207 |
feed_forward_dim=config['intermediate_size'], |
|
|
208 |
training=training, |
|
|
209 |
trainable=trainable, |
|
|
210 |
) |
|
|
211 |
if build: |
|
|
212 |
model.build(input_shape=[(None, None), (None, None), (None, None)]) |
|
|
213 |
return model, config |