|
a |
|
b/EL.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"id": "138778c4", |
|
|
7 |
"metadata": { |
|
|
8 |
"id": "138778c4" |
|
|
9 |
}, |
|
|
10 |
"outputs": [], |
|
|
11 |
"source": [ |
|
|
12 |
"from tqdm import tqdm\n", |
|
|
13 |
"import pandas as pd\n", |
|
|
14 |
"from sklearn import metrics\n", |
|
|
15 |
"from scipy.spatial.distance import cdist" |
|
|
16 |
] |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"execution_count": null, |
|
|
21 |
"id": "dTSILRD7hIHG", |
|
|
22 |
"metadata": { |
|
|
23 |
"colab": { |
|
|
24 |
"base_uri": "https://localhost:8080/" |
|
|
25 |
}, |
|
|
26 |
"id": "dTSILRD7hIHG", |
|
|
27 |
"outputId": "9d7677f8-fc7d-403c-e8dd-6135bc581c01" |
|
|
28 |
}, |
|
|
29 |
"outputs": [ |
|
|
30 |
{ |
|
|
31 |
"name": "stdout", |
|
|
32 |
"output_type": "stream", |
|
|
33 |
"text": [ |
|
|
34 |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", |
|
|
35 |
"Collecting transformers\n", |
|
|
36 |
" Downloading transformers-4.24.0-py3-none-any.whl (5.5 MB)\n", |
|
|
37 |
"\u001b[K |████████████████████████████████| 5.5 MB 4.7 MB/s \n", |
|
|
38 |
"\u001b[?25hCollecting huggingface-hub<1.0,>=0.10.0\n", |
|
|
39 |
" Downloading huggingface_hub-0.10.1-py3-none-any.whl (163 kB)\n", |
|
|
40 |
"\u001b[K |████████████████████████████████| 163 kB 88.9 MB/s \n", |
|
|
41 |
"\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n", |
|
|
42 |
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.21.6)\n", |
|
|
43 |
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.13.0)\n", |
|
|
44 |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (6.0)\n", |
|
|
45 |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)\n", |
|
|
46 |
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2022.6.2)\n", |
|
|
47 |
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.8.0)\n", |
|
|
48 |
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.64.1)\n", |
|
|
49 |
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n", |
|
|
50 |
" Downloading tokenizers-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n", |
|
|
51 |
"\u001b[K |████████████████████████████████| 7.6 MB 89.1 MB/s \n", |
|
|
52 |
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.1.1)\n", |
|
|
53 |
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n", |
|
|
54 |
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.10.0)\n", |
|
|
55 |
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n", |
|
|
56 |
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)\n", |
|
|
57 |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2022.9.24)\n", |
|
|
58 |
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n", |
|
|
59 |
"Installing collected packages: tokenizers, huggingface-hub, transformers\n", |
|
|
60 |
"Successfully installed huggingface-hub-0.10.1 tokenizers-0.13.1 transformers-4.24.0\n" |
|
|
61 |
] |
|
|
62 |
} |
|
|
63 |
], |
|
|
64 |
"source": [ |
|
|
65 |
"!pip install transformers" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": null, |
|
|
71 |
"id": "70512d4e", |
|
|
72 |
"metadata": { |
|
|
73 |
"id": "70512d4e", |
|
|
74 |
"outputId": "ebc36a95-bb47-425a-9c2c-7456141778e6" |
|
|
75 |
}, |
|
|
76 |
"outputs": [ |
|
|
77 |
{ |
|
|
78 |
"name": "stdout", |
|
|
79 |
"output_type": "stream", |
|
|
80 |
"text": [ |
|
|
81 |
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", |
|
|
82 |
"To disable this warning, you can either:\n", |
|
|
83 |
"\t- Avoid using `tokenizers` before the fork if possible\n", |
|
|
84 |
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", |
|
|
85 |
"Collecting parallelformers\n", |
|
|
86 |
" Downloading parallelformers-1.2.7.tar.gz (48 kB)\n", |
|
|
87 |
"\u001b[K |████████████████████████████████| 48 kB 557 kB/s eta 0:00:011\n", |
|
|
88 |
"\u001b[?25hRequirement already satisfied: transformers>=4.2 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from parallelformers) (4.24.0)\n", |
|
|
89 |
"Requirement already satisfied: torch in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from parallelformers) (1.11.0)\n", |
|
|
90 |
"Collecting dacite\n", |
|
|
91 |
" Downloading dacite-1.6.0-py3-none-any.whl (12 kB)\n", |
|
|
92 |
"Requirement already satisfied: filelock in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (3.6.0)\n", |
|
|
93 |
"Requirement already satisfied: packaging>=20.0 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (21.3)\n", |
|
|
94 |
"Requirement already satisfied: huggingface-hub<1.0,>=0.10.0 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (0.10.1)\n", |
|
|
95 |
"Requirement already satisfied: tqdm>=4.27 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (4.64.1)\n", |
|
|
96 |
"Requirement already satisfied: regex!=2019.12.17 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (2022.7.25)\n", |
|
|
97 |
"Requirement already satisfied: requests in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (2.27.1)\n", |
|
|
98 |
"Requirement already satisfied: pyyaml>=5.1 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (6.0)\n", |
|
|
99 |
"Requirement already satisfied: numpy>=1.17 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (1.21.5)\n", |
|
|
100 |
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from transformers>=4.2->parallelformers) (0.13.1)\n", |
|
|
101 |
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.10.0->transformers>=4.2->parallelformers) (4.1.1)\n", |
|
|
102 |
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from packaging>=20.0->transformers>=4.2->parallelformers) (2.4.7)\n", |
|
|
103 |
"Requirement already satisfied: charset-normalizer~=2.0.0 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from requests->transformers>=4.2->parallelformers) (2.0.4)\n", |
|
|
104 |
"Requirement already satisfied: certifi>=2017.4.17 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from requests->transformers>=4.2->parallelformers) (2021.10.8)\n", |
|
|
105 |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from requests->transformers>=4.2->parallelformers) (1.26.9)\n", |
|
|
106 |
"Requirement already satisfied: idna<4,>=2.5 in /home2/sashank.sridhar/miniconda3/envs/TripletLoss/lib/python3.9/site-packages (from requests->transformers>=4.2->parallelformers) (3.3)\n", |
|
|
107 |
"Building wheels for collected packages: parallelformers\n", |
|
|
108 |
" Building wheel for parallelformers (setup.py) ... \u001b[?25ldone\n", |
|
|
109 |
"\u001b[?25h Created wheel for parallelformers: filename=parallelformers-1.2.7-py3-none-any.whl size=117791 sha256=ce1c96f5d462c55210041d65abcc897059cc1349cfafe5afcc489f60b6fbb7c6\n", |
|
|
110 |
" Stored in directory: /home2/sashank.sridhar/.cache/pip/wheels/4f/19/42/8d74380c84a1e93401ee163f3bd545853051a4d895fd95ca2e\n", |
|
|
111 |
"Successfully built parallelformers\n", |
|
|
112 |
"Installing collected packages: dacite, parallelformers\n", |
|
|
113 |
"Successfully installed dacite-1.6.0 parallelformers-1.2.7\n" |
|
|
114 |
] |
|
|
115 |
} |
|
|
116 |
], |
|
|
117 |
"source": [ |
|
|
118 |
"!pip install parallelformers" |
|
|
119 |
] |
|
|
120 |
}, |
|
|
121 |
{ |
|
|
122 |
"cell_type": "code", |
|
|
123 |
"execution_count": null, |
|
|
124 |
"id": "6b2ace9d", |
|
|
125 |
"metadata": { |
|
|
126 |
"id": "6b2ace9d" |
|
|
127 |
}, |
|
|
128 |
"outputs": [], |
|
|
129 |
"source": [ |
|
|
130 |
"!pip install faiss-gpu" |
|
|
131 |
] |
|
|
132 |
}, |
|
|
133 |
{ |
|
|
134 |
"cell_type": "markdown", |
|
|
135 |
"id": "5a0d2481", |
|
|
136 |
"metadata": { |
|
|
137 |
"id": "5a0d2481" |
|
|
138 |
}, |
|
|
139 |
"source": [ |
|
|
140 |
"Download snomed term-concept file from UMLS website" |
|
|
141 |
] |
|
|
142 |
}, |
|
|
143 |
{ |
|
|
144 |
"cell_type": "code", |
|
|
145 |
"execution_count": null, |
|
|
146 |
"id": "ea498c9d", |
|
|
147 |
"metadata": { |
|
|
148 |
"colab": { |
|
|
149 |
"base_uri": "https://localhost:8080/" |
|
|
150 |
}, |
|
|
151 |
"id": "ea498c9d", |
|
|
152 |
"outputId": "49723e0b-aee4-46f9-b162-e319f10475d6" |
|
|
153 |
}, |
|
|
154 |
"outputs": [ |
|
|
155 |
{ |
|
|
156 |
"name": "stdout", |
|
|
157 |
"output_type": "stream", |
|
|
158 |
"text": [ |
|
|
159 |
"1569232\n" |
|
|
160 |
] |
|
|
161 |
} |
|
|
162 |
], |
|
|
163 |
"source": [ |
|
|
164 |
"snomed_csv = pd.read_csv(\"data/sct2_Description_Snapshot-en_INT_20220831.txt\", delimiter=\"\\t\")\n", |
|
|
165 |
"print(len(snomed_csv))" |
|
|
166 |
] |
|
|
167 |
}, |
|
|
168 |
{ |
|
|
169 |
"cell_type": "code", |
|
|
170 |
"execution_count": null, |
|
|
171 |
"id": "d811cd3c", |
|
|
172 |
"metadata": { |
|
|
173 |
"colab": { |
|
|
174 |
"base_uri": "https://localhost:8080/" |
|
|
175 |
}, |
|
|
176 |
"id": "d811cd3c", |
|
|
177 |
"outputId": "2bce882d-ab28-4af6-b07f-ed73b1b5f4c8" |
|
|
178 |
}, |
|
|
179 |
"outputs": [ |
|
|
180 |
{ |
|
|
181 |
"data": { |
|
|
182 |
"text/plain": [ |
|
|
183 |
"Index(['id', 'effectiveTime', 'active', 'moduleId', 'conceptId',\n", |
|
|
184 |
" 'languageCode', 'typeId', 'term', 'caseSignificanceId'],\n", |
|
|
185 |
" dtype='object')" |
|
|
186 |
] |
|
|
187 |
}, |
|
|
188 |
"execution_count": 3, |
|
|
189 |
"metadata": {}, |
|
|
190 |
"output_type": "execute_result" |
|
|
191 |
} |
|
|
192 |
], |
|
|
193 |
"source": [ |
|
|
194 |
"snomed_csv.columns" |
|
|
195 |
] |
|
|
196 |
}, |
|
|
197 |
{ |
|
|
198 |
"cell_type": "code", |
|
|
199 |
"execution_count": null, |
|
|
200 |
"id": "3327f0d9", |
|
|
201 |
"metadata": { |
|
|
202 |
"colab": { |
|
|
203 |
"base_uri": "https://localhost:8080/", |
|
|
204 |
"height": 530 |
|
|
205 |
}, |
|
|
206 |
"id": "3327f0d9", |
|
|
207 |
"outputId": "7bbd5033-5116-4b65-c66a-f2cb3365f859" |
|
|
208 |
}, |
|
|
209 |
"outputs": [ |
|
|
210 |
{ |
|
|
211 |
"data": { |
|
|
212 |
"text/html": [ |
|
|
213 |
"<div>\n", |
|
|
214 |
"<style scoped>\n", |
|
|
215 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
216 |
" vertical-align: middle;\n", |
|
|
217 |
" }\n", |
|
|
218 |
"\n", |
|
|
219 |
" .dataframe tbody tr th {\n", |
|
|
220 |
" vertical-align: top;\n", |
|
|
221 |
" }\n", |
|
|
222 |
"\n", |
|
|
223 |
" .dataframe thead th {\n", |
|
|
224 |
" text-align: right;\n", |
|
|
225 |
" }\n", |
|
|
226 |
"</style>\n", |
|
|
227 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
228 |
" <thead>\n", |
|
|
229 |
" <tr style=\"text-align: right;\">\n", |
|
|
230 |
" <th></th>\n", |
|
|
231 |
" <th>id</th>\n", |
|
|
232 |
" <th>effectiveTime</th>\n", |
|
|
233 |
" <th>active</th>\n", |
|
|
234 |
" <th>moduleId</th>\n", |
|
|
235 |
" <th>conceptId</th>\n", |
|
|
236 |
" <th>languageCode</th>\n", |
|
|
237 |
" <th>typeId</th>\n", |
|
|
238 |
" <th>term</th>\n", |
|
|
239 |
" <th>caseSignificanceId</th>\n", |
|
|
240 |
" </tr>\n", |
|
|
241 |
" </thead>\n", |
|
|
242 |
" <tbody>\n", |
|
|
243 |
" <tr>\n", |
|
|
244 |
" <th>0</th>\n", |
|
|
245 |
" <td>101013</td>\n", |
|
|
246 |
" <td>20170731</td>\n", |
|
|
247 |
" <td>1</td>\n", |
|
|
248 |
" <td>900000000000207008</td>\n", |
|
|
249 |
" <td>126813005</td>\n", |
|
|
250 |
" <td>en</td>\n", |
|
|
251 |
" <td>900000000000013009</td>\n", |
|
|
252 |
" <td>Neoplasm of anterior aspect of epiglottis</td>\n", |
|
|
253 |
" <td>900000000000448009</td>\n", |
|
|
254 |
" </tr>\n", |
|
|
255 |
" <tr>\n", |
|
|
256 |
" <th>1</th>\n", |
|
|
257 |
" <td>102018</td>\n", |
|
|
258 |
" <td>20170731</td>\n", |
|
|
259 |
" <td>1</td>\n", |
|
|
260 |
" <td>900000000000207008</td>\n", |
|
|
261 |
" <td>126814004</td>\n", |
|
|
262 |
" <td>en</td>\n", |
|
|
263 |
" <td>900000000000013009</td>\n", |
|
|
264 |
" <td>Neoplasm of junctional region of epiglottis</td>\n", |
|
|
265 |
" <td>900000000000448009</td>\n", |
|
|
266 |
" </tr>\n", |
|
|
267 |
" <tr>\n", |
|
|
268 |
" <th>2</th>\n", |
|
|
269 |
" <td>103011</td>\n", |
|
|
270 |
" <td>20170731</td>\n", |
|
|
271 |
" <td>1</td>\n", |
|
|
272 |
" <td>900000000000207008</td>\n", |
|
|
273 |
" <td>126815003</td>\n", |
|
|
274 |
" <td>en</td>\n", |
|
|
275 |
" <td>900000000000013009</td>\n", |
|
|
276 |
" <td>Neoplasm of lateral wall of oropharynx</td>\n", |
|
|
277 |
" <td>900000000000448009</td>\n", |
|
|
278 |
" </tr>\n", |
|
|
279 |
" <tr>\n", |
|
|
280 |
" <th>3</th>\n", |
|
|
281 |
" <td>104017</td>\n", |
|
|
282 |
" <td>20170731</td>\n", |
|
|
283 |
" <td>1</td>\n", |
|
|
284 |
" <td>900000000000207008</td>\n", |
|
|
285 |
" <td>126816002</td>\n", |
|
|
286 |
" <td>en</td>\n", |
|
|
287 |
" <td>900000000000013009</td>\n", |
|
|
288 |
" <td>Neoplasm of posterior wall of oropharynx</td>\n", |
|
|
289 |
" <td>900000000000448009</td>\n", |
|
|
290 |
" </tr>\n", |
|
|
291 |
" <tr>\n", |
|
|
292 |
" <th>4</th>\n", |
|
|
293 |
" <td>105016</td>\n", |
|
|
294 |
" <td>20170731</td>\n", |
|
|
295 |
" <td>1</td>\n", |
|
|
296 |
" <td>900000000000207008</td>\n", |
|
|
297 |
" <td>126817006</td>\n", |
|
|
298 |
" <td>en</td>\n", |
|
|
299 |
" <td>900000000000013009</td>\n", |
|
|
300 |
" <td>Neoplasm of esophagus</td>\n", |
|
|
301 |
" <td>900000000000448009</td>\n", |
|
|
302 |
" </tr>\n", |
|
|
303 |
" </tbody>\n", |
|
|
304 |
"</table>\n", |
|
|
305 |
"</div>" |
|
|
306 |
], |
|
|
307 |
"text/plain": [ |
|
|
308 |
" id effectiveTime active moduleId conceptId languageCode \\\n", |
|
|
309 |
"0 101013 20170731 1 900000000000207008 126813005 en \n", |
|
|
310 |
"1 102018 20170731 1 900000000000207008 126814004 en \n", |
|
|
311 |
"2 103011 20170731 1 900000000000207008 126815003 en \n", |
|
|
312 |
"3 104017 20170731 1 900000000000207008 126816002 en \n", |
|
|
313 |
"4 105016 20170731 1 900000000000207008 126817006 en \n", |
|
|
314 |
"\n", |
|
|
315 |
" typeId term \\\n", |
|
|
316 |
"0 900000000000013009 Neoplasm of anterior aspect of epiglottis \n", |
|
|
317 |
"1 900000000000013009 Neoplasm of junctional region of epiglottis \n", |
|
|
318 |
"2 900000000000013009 Neoplasm of lateral wall of oropharynx \n", |
|
|
319 |
"3 900000000000013009 Neoplasm of posterior wall of oropharynx \n", |
|
|
320 |
"4 900000000000013009 Neoplasm of esophagus \n", |
|
|
321 |
"\n", |
|
|
322 |
" caseSignificanceId \n", |
|
|
323 |
"0 900000000000448009 \n", |
|
|
324 |
"1 900000000000448009 \n", |
|
|
325 |
"2 900000000000448009 \n", |
|
|
326 |
"3 900000000000448009 \n", |
|
|
327 |
"4 900000000000448009 " |
|
|
328 |
] |
|
|
329 |
}, |
|
|
330 |
"execution_count": 4, |
|
|
331 |
"metadata": {}, |
|
|
332 |
"output_type": "execute_result" |
|
|
333 |
} |
|
|
334 |
], |
|
|
335 |
"source": [ |
|
|
336 |
"snomed_csv.head()" |
|
|
337 |
] |
|
|
338 |
}, |
|
|
339 |
{ |
|
|
340 |
"cell_type": "markdown", |
|
|
341 |
"id": "eee36071", |
|
|
342 |
"metadata": { |
|
|
343 |
"id": "eee36071" |
|
|
344 |
}, |
|
|
345 |
"source": [ |
|
|
346 |
"Process snomed terms" |
|
|
347 |
] |
|
|
348 |
}, |
|
|
349 |
{ |
|
|
350 |
"cell_type": "code", |
|
|
351 |
"execution_count": null, |
|
|
352 |
"id": "fc74afa8", |
|
|
353 |
"metadata": { |
|
|
354 |
"id": "fc74afa8" |
|
|
355 |
}, |
|
|
356 |
"outputs": [], |
|
|
357 |
"source": [ |
|
|
358 |
"all_ids = snomed_csv['conceptId']\n", |
|
|
359 |
"all_names = []\n", |
|
|
360 |
"for i in snomed_csv['term']:\n", |
|
|
361 |
" try:\n", |
|
|
362 |
" all_names.append(i.lower())\n", |
|
|
363 |
" except:\n", |
|
|
364 |
" all_names.append('not applicable')\n", |
|
|
365 |
"# print(i)" |
|
|
366 |
] |
|
|
367 |
}, |
|
|
368 |
{ |
|
|
369 |
"cell_type": "code", |
|
|
370 |
"execution_count": null, |
|
|
371 |
"id": "ecbc8292", |
|
|
372 |
"metadata": { |
|
|
373 |
"colab": { |
|
|
374 |
"base_uri": "https://localhost:8080/" |
|
|
375 |
}, |
|
|
376 |
"id": "ecbc8292", |
|
|
377 |
"outputId": "eb0c0228-aa13-4a37-e4d5-d1d5cee77806" |
|
|
378 |
}, |
|
|
379 |
"outputs": [ |
|
|
380 |
{ |
|
|
381 |
"data": { |
|
|
382 |
"text/plain": [ |
|
|
383 |
"id 1491117014\n", |
|
|
384 |
"effectiveTime 20030131\n", |
|
|
385 |
"active 1\n", |
|
|
386 |
"moduleId 900000000000207008\n", |
|
|
387 |
"conceptId 385432009\n", |
|
|
388 |
"languageCode en\n", |
|
|
389 |
"typeId 900000000000013009\n", |
|
|
390 |
"term NaN\n", |
|
|
391 |
"caseSignificanceId 900000000000020002\n", |
|
|
392 |
"Name: 906846, dtype: object" |
|
|
393 |
] |
|
|
394 |
}, |
|
|
395 |
"execution_count": 6, |
|
|
396 |
"metadata": {}, |
|
|
397 |
"output_type": "execute_result" |
|
|
398 |
} |
|
|
399 |
], |
|
|
400 |
"source": [ |
|
|
401 |
"snomed_csv.iloc[906846]" |
|
|
402 |
] |
|
|
403 |
}, |
|
|
404 |
{ |
|
|
405 |
"cell_type": "code", |
|
|
406 |
"execution_count": null, |
|
|
407 |
"id": "6d11f0d6", |
|
|
408 |
"metadata": { |
|
|
409 |
"id": "6d11f0d6" |
|
|
410 |
}, |
|
|
411 |
"outputs": [], |
|
|
412 |
"source": [ |
|
|
413 |
"snomed_name_id = [(all_names[i], all_ids[i]) for i in range(len(all_ids))]" |
|
|
414 |
] |
|
|
415 |
}, |
|
|
416 |
{ |
|
|
417 |
"cell_type": "code", |
|
|
418 |
"execution_count": null, |
|
|
419 |
"id": "f61e031c", |
|
|
420 |
"metadata": { |
|
|
421 |
"colab": { |
|
|
422 |
"base_uri": "https://localhost:8080/" |
|
|
423 |
}, |
|
|
424 |
"id": "f61e031c", |
|
|
425 |
"outputId": "3a768eb2-906b-4974-d468-c53b63cd057e" |
|
|
426 |
}, |
|
|
427 |
"outputs": [ |
|
|
428 |
{ |
|
|
429 |
"data": { |
|
|
430 |
"text/plain": [ |
|
|
431 |
"1569232" |
|
|
432 |
] |
|
|
433 |
}, |
|
|
434 |
"execution_count": 8, |
|
|
435 |
"metadata": {}, |
|
|
436 |
"output_type": "execute_result" |
|
|
437 |
} |
|
|
438 |
], |
|
|
439 |
"source": [ |
|
|
440 |
"len(all_ids)" |
|
|
441 |
] |
|
|
442 |
}, |
|
|
443 |
{ |
|
|
444 |
"cell_type": "code", |
|
|
445 |
"execution_count": null, |
|
|
446 |
"id": "8b2c1e53", |
|
|
447 |
"metadata": { |
|
|
448 |
"colab": { |
|
|
449 |
"base_uri": "https://localhost:8080/" |
|
|
450 |
}, |
|
|
451 |
"id": "8b2c1e53", |
|
|
452 |
"outputId": "84851594-3060-4197-9886-78d9d1e443fa" |
|
|
453 |
}, |
|
|
454 |
"outputs": [ |
|
|
455 |
{ |
|
|
456 |
"data": { |
|
|
457 |
"text/plain": [ |
|
|
458 |
"['neoplasm of anterior aspect of epiglottis',\n", |
|
|
459 |
" 'neoplasm of junctional region of epiglottis',\n", |
|
|
460 |
" 'neoplasm of lateral wall of oropharynx',\n", |
|
|
461 |
" 'neoplasm of posterior wall of oropharynx',\n", |
|
|
462 |
" 'neoplasm of esophagus',\n", |
|
|
463 |
" 'neoplasm of cervical esophagus',\n", |
|
|
464 |
" 'neoplasm of thoracic esophagus',\n", |
|
|
465 |
" 'neoplasm of abdominal esophagus',\n", |
|
|
466 |
" 'neoplasm of middle third of esophagus',\n", |
|
|
467 |
" 'neoplasm of lower third of esophagus']" |
|
|
468 |
] |
|
|
469 |
}, |
|
|
470 |
"execution_count": 9, |
|
|
471 |
"metadata": {}, |
|
|
472 |
"output_type": "execute_result" |
|
|
473 |
} |
|
|
474 |
], |
|
|
475 |
"source": [ |
|
|
476 |
"all_names[:10]" |
|
|
477 |
] |
|
|
478 |
}, |
|
|
479 |
{ |
|
|
480 |
"cell_type": "code", |
|
|
481 |
"execution_count": null, |
|
|
482 |
"id": "4de928c7", |
|
|
483 |
"metadata": { |
|
|
484 |
"colab": { |
|
|
485 |
"base_uri": "https://localhost:8080/" |
|
|
486 |
}, |
|
|
487 |
"id": "4de928c7", |
|
|
488 |
"outputId": "1f491d1a-1d2a-451c-86db-12b1bc92c536" |
|
|
489 |
}, |
|
|
490 |
"outputs": [ |
|
|
491 |
{ |
|
|
492 |
"data": { |
|
|
493 |
"text/plain": [ |
|
|
494 |
"0 126813005\n", |
|
|
495 |
"1 126814004\n", |
|
|
496 |
"2 126815003\n", |
|
|
497 |
"3 126816002\n", |
|
|
498 |
"4 126817006\n", |
|
|
499 |
"5 126818001\n", |
|
|
500 |
"6 126819009\n", |
|
|
501 |
"7 126820003\n", |
|
|
502 |
"8 126822006\n", |
|
|
503 |
"9 126823001\n", |
|
|
504 |
"Name: conceptId, dtype: int64" |
|
|
505 |
] |
|
|
506 |
}, |
|
|
507 |
"execution_count": 10, |
|
|
508 |
"metadata": {}, |
|
|
509 |
"output_type": "execute_result" |
|
|
510 |
} |
|
|
511 |
], |
|
|
512 |
"source": [ |
|
|
513 |
"all_ids[:10]" |
|
|
514 |
] |
|
|
515 |
}, |
|
|
516 |
{ |
|
|
517 |
"cell_type": "markdown", |
|
|
518 |
"id": "0b808263", |
|
|
519 |
"metadata": { |
|
|
520 |
"id": "0b808263" |
|
|
521 |
}, |
|
|
522 |
"source": [ |
|
|
523 |
"# load sapbert" |
|
|
524 |
] |
|
|
525 |
}, |
|
|
526 |
{ |
|
|
527 |
"cell_type": "code", |
|
|
528 |
"execution_count": null, |
|
|
529 |
"id": "a7c7ac5b", |
|
|
530 |
"metadata": { |
|
|
531 |
"id": "a7c7ac5b" |
|
|
532 |
}, |
|
|
533 |
"outputs": [], |
|
|
534 |
"source": [ |
|
|
535 |
"import numpy as np\n", |
|
|
536 |
"import torch" |
|
|
537 |
] |
|
|
538 |
}, |
|
|
539 |
{ |
|
|
540 |
"cell_type": "code", |
|
|
541 |
"execution_count": null, |
|
|
542 |
"id": "d2c96dea", |
|
|
543 |
"metadata": { |
|
|
544 |
"id": "d2c96dea" |
|
|
545 |
}, |
|
|
546 |
"outputs": [], |
|
|
547 |
"source": [ |
|
|
548 |
"GPU_COUNT = torch.cuda.device_count()" |
|
|
549 |
] |
|
|
550 |
}, |
|
|
551 |
{ |
|
|
552 |
"cell_type": "code", |
|
|
553 |
"execution_count": null, |
|
|
554 |
"id": "5c3cfade", |
|
|
555 |
"metadata": { |
|
|
556 |
"id": "5c3cfade", |
|
|
557 |
"outputId": "511a715e-cad2-457c-9ed2-b2e4030cedac" |
|
|
558 |
}, |
|
|
559 |
"outputs": [ |
|
|
560 |
{ |
|
|
561 |
"data": { |
|
|
562 |
"text/plain": [ |
|
|
563 |
"4" |
|
|
564 |
] |
|
|
565 |
}, |
|
|
566 |
"execution_count": 13, |
|
|
567 |
"metadata": {}, |
|
|
568 |
"output_type": "execute_result" |
|
|
569 |
} |
|
|
570 |
], |
|
|
571 |
"source": [ |
|
|
572 |
"GPU_COUNT" |
|
|
573 |
] |
|
|
574 |
}, |
|
|
575 |
{ |
|
|
576 |
"cell_type": "code", |
|
|
577 |
"execution_count": null, |
|
|
578 |
"id": "7bd1e1f2", |
|
|
579 |
"metadata": { |
|
|
580 |
"id": "7bd1e1f2", |
|
|
581 |
"outputId": "1d07efbb-3eb4-48b3-fab2-b8ef364066bd" |
|
|
582 |
}, |
|
|
583 |
"outputs": [ |
|
|
584 |
{ |
|
|
585 |
"data": { |
|
|
586 |
"text/plain": [ |
|
|
587 |
"device(type='cuda')" |
|
|
588 |
] |
|
|
589 |
}, |
|
|
590 |
"execution_count": 14, |
|
|
591 |
"metadata": {}, |
|
|
592 |
"output_type": "execute_result" |
|
|
593 |
} |
|
|
594 |
], |
|
|
595 |
"source": [ |
|
|
596 |
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") ## specify the GPU id's, GPU id's start from 0.\n", |
|
|
597 |
"device" |
|
|
598 |
] |
|
|
599 |
}, |
|
|
600 |
{ |
|
|
601 |
"cell_type": "code", |
|
|
602 |
"execution_count": null, |
|
|
603 |
"id": "528023ac", |
|
|
604 |
"metadata": { |
|
|
605 |
"colab": { |
|
|
606 |
"base_uri": "https://localhost:8080/", |
|
|
607 |
"height": 177, |
|
|
608 |
"referenced_widgets": [ |
|
|
609 |
"e6bdda56f1e14d45b1c99940a763e69f", |
|
|
610 |
"91742ec5cec441b5a94d3046c777b22c", |
|
|
611 |
"2634942c850f4597be75b3a91f2d75a7", |
|
|
612 |
"c6727941f53a42248764a106e13596c9", |
|
|
613 |
"c2f02ef98fc649fca32c157c0d048a89", |
|
|
614 |
"06f54b167c2e4289b78ba4822d2f98de", |
|
|
615 |
"9b0a676b668a4ff884a72196524a9229", |
|
|
616 |
"d76fe4566fb548188ecd8f0575fccb69", |
|
|
617 |
"394fa40a235147e49fad6edbae132702", |
|
|
618 |
"521596b5e09b4d8fa79410d3601dcc32", |
|
|
619 |
"e2258a4aa3ad44d182d19fa6cb7aa05e", |
|
|
620 |
"998be9daecca4ed6b835333b44a5ba9e", |
|
|
621 |
"7467ec745de94196b786bf7219744a42", |
|
|
622 |
"b2d2469f3f0e4639a51ee68b7b74d20a", |
|
|
623 |
"7eb1948251dd460aa0d42f2d98536ed1", |
|
|
624 |
"9cec228d653e40e8a3774021542ffb68", |
|
|
625 |
"81f4f0e1758e4d2498e62dd95c2ea6c6", |
|
|
626 |
"4db71f00bd814dc3a0e5004eb5a2ae63", |
|
|
627 |
"802c6b027b704fce99d59f7da5eb1955", |
|
|
628 |
"df0df21a4ca647e683889a221065b16f", |
|
|
629 |
"ac83aa99e714487a919ea7aebd0ca422", |
|
|
630 |
"b963ba7bcd0a481a99d32418a5411ea6", |
|
|
631 |
"b769f41cc70c4c65a25f0d4a94811bf6", |
|
|
632 |
"3389a5f07d1a4b4e88c118fe47f241aa", |
|
|
633 |
"79cac786f31e4ee083b5c637d28eb7fc", |
|
|
634 |
"ff99ea7820634adb98d061ef265f2ff4", |
|
|
635 |
"c91b598e790e4c6ba21aeab31c177bf0", |
|
|
636 |
"a9edca0387954a09ada230067e7355b2", |
|
|
637 |
"a8b2871e2a164c94a58762d5cd3a2d95", |
|
|
638 |
"d20681be016d438eb638f1c7108f0d6a", |
|
|
639 |
"5abf07ae3e3c4f0eb8c12334ed383bcf", |
|
|
640 |
"58efb1c2ea714ee0a373ecc67d72368f", |
|
|
641 |
"39801cbd09484e439afb2829be9a9d52", |
|
|
642 |
"17cd86d84b43442081de52f15f833a71", |
|
|
643 |
"dbfa65b199f44020be9db0547b7ab18e", |
|
|
644 |
"d4cb162e77d844d8a672746573950427", |
|
|
645 |
"f00d00978f0f4077a4d10eeec352734f", |
|
|
646 |
"94c0b3dad8754852b8f727454c03c814", |
|
|
647 |
"76ffde2b8d2a4e1ba6a237bda4f7d856", |
|
|
648 |
"ba7d87dddcaa4ab1b7b0d832b4b3c451", |
|
|
649 |
"243d9b8fbc0842cfb96b531e9762bb82", |
|
|
650 |
"7b3448ed1e9442fa92acd84ea146ac2d", |
|
|
651 |
"1f6c9e48bf54406da669ee35c3f61d11", |
|
|
652 |
"fb9ddde1db3f47c5b8d7febc0ab691de", |
|
|
653 |
"ba13e64517a740bc89b29e25dac9de4f", |
|
|
654 |
"3f87d08da51c42ff8c909b12ca2df863", |
|
|
655 |
"e7b62de8e4794cd599198ad69e062f2b", |
|
|
656 |
"0e853c8f845d44fd85b172c8200ec82a", |
|
|
657 |
"743e49cf0f5a464b99ab5e1b96c81543", |
|
|
658 |
"fb6b72144db74d8e85489007e0b97396", |
|
|
659 |
"18c2c03f320e4c59a6451e13d3ce9221", |
|
|
660 |
"862d52c5e86f49f68013d234d1cb80e1", |
|
|
661 |
"d2290c10bbff46548e613f5045eb7117", |
|
|
662 |
"615e44bd9b404f96ab1ca449cb14d30d", |
|
|
663 |
"a0329c633eb04e0594ed4f033d25bc37" |
|
|
664 |
] |
|
|
665 |
}, |
|
|
666 |
"id": "528023ac", |
|
|
667 |
"outputId": "deb976ff-2225-45d1-9bce-ced92357067b" |
|
|
668 |
}, |
|
|
669 |
"outputs": [ |
|
|
670 |
{ |
|
|
671 |
"name": "stderr", |
|
|
672 |
"output_type": "stream", |
|
|
673 |
"text": [ |
|
|
674 |
"2022-11-03 15:18:28.534264: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", |
|
|
675 |
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
|
|
676 |
"2022-11-03 15:18:28.796577: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
|
|
677 |
"2022-11-03 15:18:30.642085: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
678 |
"2022-11-03 15:18:30.642256: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
679 |
"2022-11-03 15:18:30.642272: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" |
|
|
680 |
] |
|
|
681 |
} |
|
|
682 |
], |
|
|
683 |
"source": [ |
|
|
684 |
"from transformers import AutoTokenizer, AutoModel\n", |
|
|
685 |
"tokenizer = AutoTokenizer.from_pretrained(\"cambridgeltl/SapBERT-from-PubMedBERT-fulltext\")\n", |
|
|
686 |
"model = AutoModel.from_pretrained(\"cambridgeltl/SapBERT-from-PubMedBERT-fulltext\")" |
|
|
687 |
] |
|
|
688 |
}, |
|
|
689 |
{ |
|
|
690 |
"cell_type": "code", |
|
|
691 |
"execution_count": null, |
|
|
692 |
"id": "tlzJasirUq6Y", |
|
|
693 |
"metadata": { |
|
|
694 |
"id": "tlzJasirUq6Y", |
|
|
695 |
"outputId": "6fa6247e-3bb5-4e07-b976-09f3b62a26db" |
|
|
696 |
}, |
|
|
697 |
"outputs": [ |
|
|
698 |
{ |
|
|
699 |
"name": "stderr", |
|
|
700 |
"output_type": "stream", |
|
|
701 |
"text": [ |
|
|
702 |
"2022-11-03 15:18:42.016139: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", |
|
|
703 |
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
|
|
704 |
"2022-11-03 15:18:42.048513: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", |
|
|
705 |
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
|
|
706 |
"2022-11-03 15:18:42.083803: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", |
|
|
707 |
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
|
|
708 |
"2022-11-03 15:18:42.090996: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", |
|
|
709 |
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
|
|
710 |
"2022-11-03 15:18:42.302304: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
|
|
711 |
"2022-11-03 15:18:42.302975: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
|
|
712 |
"2022-11-03 15:18:42.342529: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
|
|
713 |
"2022-11-03 15:18:42.344770: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
|
|
714 |
"2022-11-03 15:18:43.882634: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
715 |
"2022-11-03 15:18:43.882867: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
716 |
"2022-11-03 15:18:43.882893: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n", |
|
|
717 |
"2022-11-03 15:18:43.895654: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
718 |
"2022-11-03 15:18:43.895895: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
719 |
"2022-11-03 15:18:43.895920: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n", |
|
|
720 |
"2022-11-03 15:18:43.897874: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
721 |
"2022-11-03 15:18:43.898080: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
722 |
"2022-11-03 15:18:43.898103: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n", |
|
|
723 |
"2022-11-03 15:18:43.945918: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
724 |
"2022-11-03 15:18:43.946181: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64:/opt/cudnn-7.6.5.32-cuda-10.2/lib64\n", |
|
|
725 |
"2022-11-03 15:18:43.946208: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" |
|
|
726 |
] |
|
|
727 |
}, |
|
|
728 |
{ |
|
|
729 |
"data": { |
|
|
730 |
"text/plain": [ |
|
|
731 |
"<parallelformers.parallelize.parallelize at 0x14a2954f9f40>" |
|
|
732 |
] |
|
|
733 |
}, |
|
|
734 |
"execution_count": 16, |
|
|
735 |
"metadata": {}, |
|
|
736 |
"output_type": "execute_result" |
|
|
737 |
} |
|
|
738 |
], |
|
|
739 |
"source": [ |
|
|
740 |
"# model = torch.nn.DataParallel(model)\n", |
|
|
741 |
"# model.to(device)\n", |
|
|
742 |
"from parallelformers import parallelize\n", |
|
|
743 |
"parallelize(model, num_gpus=4, fp16=True)" |
|
|
744 |
] |
|
|
745 |
}, |
|
|
746 |
{ |
|
|
747 |
"cell_type": "markdown", |
|
|
748 |
"id": "a3a24048", |
|
|
749 |
"metadata": { |
|
|
750 |
"id": "a3a24048" |
|
|
751 |
}, |
|
|
752 |
"source": [ |
|
|
753 |
"Generate embeddings for snomed labels" |
|
|
754 |
] |
|
|
755 |
}, |
|
|
756 |
{ |
|
|
757 |
"cell_type": "code", |
|
|
758 |
"execution_count": null, |
|
|
759 |
"id": "bb0b8655", |
|
|
760 |
"metadata": { |
|
|
761 |
"id": "bb0b8655" |
|
|
762 |
}, |
|
|
763 |
"outputs": [], |
|
|
764 |
"source": [ |
|
|
765 |
"# all_names1 = all_names[:100]" |
|
|
766 |
] |
|
|
767 |
}, |
|
|
768 |
{ |
|
|
769 |
"cell_type": "code", |
|
|
770 |
"execution_count": null, |
|
|
771 |
"id": "5c5ff31c", |
|
|
772 |
"metadata": { |
|
|
773 |
"colab": { |
|
|
774 |
"base_uri": "https://localhost:8080/" |
|
|
775 |
}, |
|
|
776 |
"id": "5c5ff31c", |
|
|
777 |
"outputId": "b229214d-80aa-4d6d-8ca7-7325c60944d6" |
|
|
778 |
}, |
|
|
779 |
"outputs": [ |
|
|
780 |
{ |
|
|
781 |
"name": "stderr", |
|
|
782 |
"output_type": "stream", |
|
|
783 |
"text": [ |
|
|
784 |
"100%|█████████████████████████████████████| 12260/12260 [17:08<00:00, 11.92it/s]\n" |
|
|
785 |
] |
|
|
786 |
} |
|
|
787 |
], |
|
|
788 |
"source": [ |
|
|
789 |
"bs = 128\n", |
|
|
790 |
"all_reps = []\n", |
|
|
791 |
"for i in tqdm(np.arange(0, len(all_names), bs)):\n", |
|
|
792 |
" toks = tokenizer.batch_encode_plus(all_names[i:i+bs],\n", |
|
|
793 |
" padding=\"max_length\",\n", |
|
|
794 |
" max_length=25,\n", |
|
|
795 |
" truncation=True,\n", |
|
|
796 |
" return_tensors=\"pt\")\n", |
|
|
797 |
" toks = toks.to(device)\n", |
|
|
798 |
" output = model(**toks)\n", |
|
|
799 |
" cls_rep = output[0][:,0,:]\n", |
|
|
800 |
" \n", |
|
|
801 |
" all_reps.append(cls_rep.cpu().detach().numpy())\n", |
|
|
802 |
"all_reps_emb = np.concatenate(all_reps, axis=0)" |
|
|
803 |
] |
|
|
804 |
}, |
|
|
805 |
{ |
|
|
806 |
"cell_type": "code", |
|
|
807 |
"execution_count": null, |
|
|
808 |
"id": "c1230654", |
|
|
809 |
"metadata": { |
|
|
810 |
"colab": { |
|
|
811 |
"base_uri": "https://localhost:8080/" |
|
|
812 |
}, |
|
|
813 |
"id": "c1230654", |
|
|
814 |
"outputId": "a552bfff-4e03-4ac4-e3c4-34365c66c708" |
|
|
815 |
}, |
|
|
816 |
"outputs": [ |
|
|
817 |
{ |
|
|
818 |
"name": "stdout", |
|
|
819 |
"output_type": "stream", |
|
|
820 |
"text": [ |
|
|
821 |
"(1569232, 768)\n" |
|
|
822 |
] |
|
|
823 |
} |
|
|
824 |
], |
|
|
825 |
"source": [ |
|
|
826 |
"print(all_reps_emb.shape)" |
|
|
827 |
] |
|
|
828 |
}, |
|
|
829 |
{ |
|
|
830 |
"cell_type": "code", |
|
|
831 |
"execution_count": null, |
|
|
832 |
"id": "00a427c1", |
|
|
833 |
"metadata": { |
|
|
834 |
"id": "00a427c1" |
|
|
835 |
}, |
|
|
836 |
"outputs": [], |
|
|
837 |
"source": [ |
|
|
838 |
"all_reps_emb = all_reps_emb.astype(np.float32)" |
|
|
839 |
] |
|
|
840 |
}, |
|
|
841 |
{ |
|
|
842 |
"cell_type": "code", |
|
|
843 |
"execution_count": null, |
|
|
844 |
"id": "3c884582", |
|
|
845 |
"metadata": { |
|
|
846 |
"id": "3c884582" |
|
|
847 |
}, |
|
|
848 |
"outputs": [], |
|
|
849 |
"source": [ |
|
|
850 |
"import faiss" |
|
|
851 |
] |
|
|
852 |
}, |
|
|
853 |
{ |
|
|
854 |
"cell_type": "code", |
|
|
855 |
"execution_count": null, |
|
|
856 |
"id": "9d7d069d", |
|
|
857 |
"metadata": { |
|
|
858 |
"id": "9d7d069d", |
|
|
859 |
"outputId": "ff1b1498-4628-4c4a-edda-d98637fcace7" |
|
|
860 |
}, |
|
|
861 |
"outputs": [ |
|
|
862 |
{ |
|
|
863 |
"name": "stdout", |
|
|
864 |
"output_type": "stream", |
|
|
865 |
"text": [ |
|
|
866 |
"True\n" |
|
|
867 |
] |
|
|
868 |
} |
|
|
869 |
], |
|
|
870 |
"source": [ |
|
|
871 |
"d = all_reps_emb.shape[1]\n", |
|
|
872 |
"index = faiss.IndexFlatL2(d) # build the index\n", |
|
|
873 |
"print(index.is_trained)" |
|
|
874 |
] |
|
|
875 |
}, |
|
|
876 |
{ |
|
|
877 |
"cell_type": "code", |
|
|
878 |
"execution_count": null, |
|
|
879 |
"id": "77b258e0", |
|
|
880 |
"metadata": { |
|
|
881 |
"id": "77b258e0", |
|
|
882 |
"outputId": "1bde8c9e-b1ed-420a-8bea-fc81b2090075" |
|
|
883 |
}, |
|
|
884 |
"outputs": [ |
|
|
885 |
{ |
|
|
886 |
"name": "stdout", |
|
|
887 |
"output_type": "stream", |
|
|
888 |
"text": [ |
|
|
889 |
"1569232\n" |
|
|
890 |
] |
|
|
891 |
} |
|
|
892 |
], |
|
|
893 |
"source": [ |
|
|
894 |
"index.add(all_reps_emb) # add vectors to the index\n", |
|
|
895 |
"print(index.ntotal)" |
|
|
896 |
] |
|
|
897 |
}, |
|
|
898 |
{ |
|
|
899 |
"cell_type": "markdown", |
|
|
900 |
"id": "40fe39a4", |
|
|
901 |
"metadata": { |
|
|
902 |
"id": "40fe39a4" |
|
|
903 |
}, |
|
|
904 |
"source": [ |
|
|
905 |
"Load ground truth data" |
|
|
906 |
] |
|
|
907 |
}, |
|
|
908 |
{ |
|
|
909 |
"cell_type": "code", |
|
|
910 |
"execution_count": null, |
|
|
911 |
"id": "44851e30", |
|
|
912 |
"metadata": { |
|
|
913 |
"colab": { |
|
|
914 |
"base_uri": "https://localhost:8080/", |
|
|
915 |
"height": 337 |
|
|
916 |
}, |
|
|
917 |
"id": "44851e30", |
|
|
918 |
"outputId": "652b992e-de38-468a-e2f3-e5b48a60c143" |
|
|
919 |
}, |
|
|
920 |
"outputs": [ |
|
|
921 |
{ |
|
|
922 |
"data": { |
|
|
923 |
"text/html": [ |
|
|
924 |
"<div>\n", |
|
|
925 |
"<style scoped>\n", |
|
|
926 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
927 |
" vertical-align: middle;\n", |
|
|
928 |
" }\n", |
|
|
929 |
"\n", |
|
|
930 |
" .dataframe tbody tr th {\n", |
|
|
931 |
" vertical-align: top;\n", |
|
|
932 |
" }\n", |
|
|
933 |
"\n", |
|
|
934 |
" .dataframe thead th {\n", |
|
|
935 |
" text-align: right;\n", |
|
|
936 |
" }\n", |
|
|
937 |
"</style>\n", |
|
|
938 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
939 |
" <thead>\n", |
|
|
940 |
" <tr style=\"text-align: right;\">\n", |
|
|
941 |
" <th></th>\n", |
|
|
942 |
" <th>filename</th>\n", |
|
|
943 |
" <th>mark</th>\n", |
|
|
944 |
" <th>label</th>\n", |
|
|
945 |
" <th>offset1</th>\n", |
|
|
946 |
" <th>offset2</th>\n", |
|
|
947 |
" <th>span</th>\n", |
|
|
948 |
" <th>code</th>\n", |
|
|
949 |
" </tr>\n", |
|
|
950 |
" </thead>\n", |
|
|
951 |
" <tbody>\n", |
|
|
952 |
" <tr>\n", |
|
|
953 |
" <th>0</th>\n", |
|
|
954 |
" <td>es-S0212-71992007000100007-1</td>\n", |
|
|
955 |
" <td>T1</td>\n", |
|
|
956 |
" <td>ENFERMEDAD</td>\n", |
|
|
957 |
" <td>40</td>\n", |
|
|
958 |
" <td>61</td>\n", |
|
|
959 |
" <td>arterial hypertension</td>\n", |
|
|
960 |
" <td>38341003</td>\n", |
|
|
961 |
" </tr>\n", |
|
|
962 |
" <tr>\n", |
|
|
963 |
" <th>1</th>\n", |
|
|
964 |
" <td>es-S0212-71992007000100007-1</td>\n", |
|
|
965 |
" <td>T2</td>\n", |
|
|
966 |
" <td>ENFERMEDAD</td>\n", |
|
|
967 |
" <td>66</td>\n", |
|
|
968 |
" <td>79</td>\n", |
|
|
969 |
" <td>polyarthrosis</td>\n", |
|
|
970 |
" <td>36186002</td>\n", |
|
|
971 |
" </tr>\n", |
|
|
972 |
" <tr>\n", |
|
|
973 |
" <th>2</th>\n", |
|
|
974 |
" <td>es-S0212-71992007000100007-1</td>\n", |
|
|
975 |
" <td>T3</td>\n", |
|
|
976 |
" <td>ENFERMEDAD</td>\n", |
|
|
977 |
" <td>1682</td>\n", |
|
|
978 |
" <td>1698</td>\n", |
|
|
979 |
" <td>pleural effusion</td>\n", |
|
|
980 |
" <td>60046008</td>\n", |
|
|
981 |
" </tr>\n", |
|
|
982 |
" <tr>\n", |
|
|
983 |
" <th>3</th>\n", |
|
|
984 |
" <td>es-S0212-71992007000100007-1</td>\n", |
|
|
985 |
" <td>T4</td>\n", |
|
|
986 |
" <td>ENFERMEDAD</td>\n", |
|
|
987 |
" <td>1859</td>\n", |
|
|
988 |
" <td>1875</td>\n", |
|
|
989 |
" <td>pleural effusion</td>\n", |
|
|
990 |
" <td>60046008</td>\n", |
|
|
991 |
" </tr>\n", |
|
|
992 |
" <tr>\n", |
|
|
993 |
" <th>4</th>\n", |
|
|
994 |
" <td>es-S0212-71992007000100007-1</td>\n", |
|
|
995 |
" <td>T5</td>\n", |
|
|
996 |
" <td>ENFERMEDAD</td>\n", |
|
|
997 |
" <td>1626</td>\n", |
|
|
998 |
" <td>1648</td>\n", |
|
|
999 |
" <td>lower lobe atelectasis</td>\n", |
|
|
1000 |
" <td>46621007</td>\n", |
|
|
1001 |
" </tr>\n", |
|
|
1002 |
" </tbody>\n", |
|
|
1003 |
"</table>\n", |
|
|
1004 |
"</div>" |
|
|
1005 |
], |
|
|
1006 |
"text/plain": [ |
|
|
1007 |
" filename mark label offset1 offset2 \\\n", |
|
|
1008 |
"0 es-S0212-71992007000100007-1 T1 ENFERMEDAD 40 61 \n", |
|
|
1009 |
"1 es-S0212-71992007000100007-1 T2 ENFERMEDAD 66 79 \n", |
|
|
1010 |
"2 es-S0212-71992007000100007-1 T3 ENFERMEDAD 1682 1698 \n", |
|
|
1011 |
"3 es-S0212-71992007000100007-1 T4 ENFERMEDAD 1859 1875 \n", |
|
|
1012 |
"4 es-S0212-71992007000100007-1 T5 ENFERMEDAD 1626 1648 \n", |
|
|
1013 |
"\n", |
|
|
1014 |
" span code \n", |
|
|
1015 |
"0 arterial hypertension 38341003 \n", |
|
|
1016 |
"1 polyarthrosis 36186002 \n", |
|
|
1017 |
"2 pleural effusion 60046008 \n", |
|
|
1018 |
"3 pleural effusion 60046008 \n", |
|
|
1019 |
"4 lower lobe atelectasis 46621007 " |
|
|
1020 |
] |
|
|
1021 |
}, |
|
|
1022 |
"execution_count": 27, |
|
|
1023 |
"metadata": {}, |
|
|
1024 |
"output_type": "execute_result" |
|
|
1025 |
} |
|
|
1026 |
], |
|
|
1027 |
"source": [ |
|
|
1028 |
"entities = pd.read_csv(\"data/entities.tsv\", delimiter=\"\\t\")\n", |
|
|
1029 |
"entities.head()" |
|
|
1030 |
] |
|
|
1031 |
}, |
|
|
1032 |
{ |
|
|
1033 |
"cell_type": "code", |
|
|
1034 |
"execution_count": null, |
|
|
1035 |
"id": "8a009c68", |
|
|
1036 |
"metadata": { |
|
|
1037 |
"colab": { |
|
|
1038 |
"base_uri": "https://localhost:8080/" |
|
|
1039 |
}, |
|
|
1040 |
"id": "8a009c68", |
|
|
1041 |
"outputId": "0b1bfb0f-0fa5-4487-d95c-2723a0c82f00", |
|
|
1042 |
"scrolled": true |
|
|
1043 |
}, |
|
|
1044 |
"outputs": [ |
|
|
1045 |
{ |
|
|
1046 |
"name": "stdout", |
|
|
1047 |
"output_type": "stream", |
|
|
1048 |
"text": [ |
|
|
1049 |
"['arterial hypertension', 'polyarthrosis', 'pleural effusion', 'pleural effusion', 'lower lobe atelectasis', 'infectious spondylodiscitis d10-d11', 'pleural effusion', 'brucellosis', 'orchiepididymitis', 'goitre']\n", |
|
|
1050 |
"0 38341003\n", |
|
|
1051 |
"1 36186002\n", |
|
|
1052 |
"2 60046008\n", |
|
|
1053 |
"3 60046008\n", |
|
|
1054 |
"4 46621007\n", |
|
|
1055 |
"5 302935008\n", |
|
|
1056 |
"6 60046008\n", |
|
|
1057 |
"7 75702008\n", |
|
|
1058 |
"8 197983000\n", |
|
|
1059 |
"9 3716002\n", |
|
|
1060 |
"Name: code, dtype: object\n" |
|
|
1061 |
] |
|
|
1062 |
} |
|
|
1063 |
], |
|
|
1064 |
"source": [ |
|
|
1065 |
"inp_names = [i.lower() for i in entities['span']]\n", |
|
|
1066 |
"inp_labels = entities['code']\n", |
|
|
1067 |
"print(inp_names[:10])\n", |
|
|
1068 |
"print(inp_labels[:10])" |
|
|
1069 |
] |
|
|
1070 |
}, |
|
|
1071 |
{ |
|
|
1072 |
"cell_type": "code", |
|
|
1073 |
"execution_count": null, |
|
|
1074 |
"id": "90bbf268", |
|
|
1075 |
"metadata": { |
|
|
1076 |
"id": "90bbf268" |
|
|
1077 |
}, |
|
|
1078 |
"outputs": [], |
|
|
1079 |
"source": [ |
|
|
1080 |
"# c=0\n", |
|
|
1081 |
"# for i in inp_label:\n", |
|
|
1082 |
"# # if type(i)!=float:\n", |
|
|
1083 |
"# try:\n", |
|
|
1084 |
"# [float(i)]\n", |
|
|
1085 |
"# except:\n", |
|
|
1086 |
"# c+=1\n", |
|
|
1087 |
"# # print(i.split('+'))\n", |
|
|
1088 |
"# c" |
|
|
1089 |
] |
|
|
1090 |
}, |
|
|
1091 |
{ |
|
|
1092 |
"cell_type": "code", |
|
|
1093 |
"execution_count": null, |
|
|
1094 |
"id": "49562d03", |
|
|
1095 |
"metadata": { |
|
|
1096 |
"id": "49562d03" |
|
|
1097 |
}, |
|
|
1098 |
"outputs": [], |
|
|
1099 |
"source": [ |
|
|
1100 |
"# inp_names1 = inp_names[:10]" |
|
|
1101 |
] |
|
|
1102 |
}, |
|
|
1103 |
{ |
|
|
1104 |
"cell_type": "markdown", |
|
|
1105 |
"id": "e6cf5d29", |
|
|
1106 |
"metadata": { |
|
|
1107 |
"id": "e6cf5d29" |
|
|
1108 |
}, |
|
|
1109 |
"source": [ |
|
|
1110 |
"Generate embeddings for ground truth terms, get their closest snomedct embedding and list out its corresponding snomedct code" |
|
|
1111 |
] |
|
|
1112 |
}, |
|
|
1113 |
{ |
|
|
1114 |
"cell_type": "code", |
|
|
1115 |
"execution_count": null, |
|
|
1116 |
"id": "049818b3", |
|
|
1117 |
"metadata": { |
|
|
1118 |
"id": "049818b3" |
|
|
1119 |
}, |
|
|
1120 |
"outputs": [], |
|
|
1121 |
"source": [ |
|
|
1122 |
"query_toks = tokenizer.batch_encode_plus(list(inp_names),\n", |
|
|
1123 |
" padding = \"max_length\",\n", |
|
|
1124 |
" max_length = 25,\n", |
|
|
1125 |
" truncation=True,\n", |
|
|
1126 |
" return_tensors=\"pt\")\n", |
|
|
1127 |
"query_toks = query_toks.to(device)\n", |
|
|
1128 |
"query_output = model(**query_toks)\n", |
|
|
1129 |
"query_cls_rep = query_output[0][:,0,:]" |
|
|
1130 |
] |
|
|
1131 |
}, |
|
|
1132 |
{ |
|
|
1133 |
"cell_type": "code", |
|
|
1134 |
"execution_count": null, |
|
|
1135 |
"id": "f0ab19b8", |
|
|
1136 |
"metadata": { |
|
|
1137 |
"id": "f0ab19b8" |
|
|
1138 |
}, |
|
|
1139 |
"outputs": [], |
|
|
1140 |
"source": [ |
|
|
1141 |
"query_cls_rep = query_cls_rep.cpu().detach().numpy()" |
|
|
1142 |
] |
|
|
1143 |
}, |
|
|
1144 |
{ |
|
|
1145 |
"cell_type": "code", |
|
|
1146 |
"execution_count": null, |
|
|
1147 |
"id": "3d90a519", |
|
|
1148 |
"metadata": { |
|
|
1149 |
"id": "3d90a519" |
|
|
1150 |
}, |
|
|
1151 |
"outputs": [], |
|
|
1152 |
"source": [ |
|
|
1153 |
"query_cls_rep = query_cls_rep.astype(np.float32)" |
|
|
1154 |
] |
|
|
1155 |
}, |
|
|
1156 |
{ |
|
|
1157 |
"cell_type": "code", |
|
|
1158 |
"execution_count": null, |
|
|
1159 |
"id": "184cd570", |
|
|
1160 |
"metadata": { |
|
|
1161 |
"id": "184cd570" |
|
|
1162 |
}, |
|
|
1163 |
"outputs": [], |
|
|
1164 |
"source": [ |
|
|
1165 |
"k= 1 # take the 1 closest neighbor" |
|
|
1166 |
] |
|
|
1167 |
}, |
|
|
1168 |
{ |
|
|
1169 |
"cell_type": "code", |
|
|
1170 |
"execution_count": null, |
|
|
1171 |
"id": "ac0965a5", |
|
|
1172 |
"metadata": { |
|
|
1173 |
"id": "ac0965a5" |
|
|
1174 |
}, |
|
|
1175 |
"outputs": [], |
|
|
1176 |
"source": [ |
|
|
1177 |
"D, I = index.search(query_cls_rep, k)" |
|
|
1178 |
] |
|
|
1179 |
}, |
|
|
1180 |
{ |
|
|
1181 |
"cell_type": "code", |
|
|
1182 |
"execution_count": null, |
|
|
1183 |
"id": "e7fada1e", |
|
|
1184 |
"metadata": { |
|
|
1185 |
"id": "e7fada1e", |
|
|
1186 |
"outputId": "3da12aec-6ca8-42ed-84ef-bb0a1f7589b0" |
|
|
1187 |
}, |
|
|
1188 |
"outputs": [ |
|
|
1189 |
{ |
|
|
1190 |
"name": "stdout", |
|
|
1191 |
"output_type": "stream", |
|
|
1192 |
"text": [ |
|
|
1193 |
"[[473409]\n", |
|
|
1194 |
" [ 58583]\n", |
|
|
1195 |
" [ 96888]\n", |
|
|
1196 |
" [ 96888]\n", |
|
|
1197 |
" [477684]]\n" |
|
|
1198 |
] |
|
|
1199 |
} |
|
|
1200 |
], |
|
|
1201 |
"source": [ |
|
|
1202 |
"print(I[:5])" |
|
|
1203 |
] |
|
|
1204 |
}, |
|
|
1205 |
{ |
|
|
1206 |
"cell_type": "code", |
|
|
1207 |
"execution_count": null, |
|
|
1208 |
"id": "4cfb69ca", |
|
|
1209 |
"metadata": { |
|
|
1210 |
"id": "4cfb69ca" |
|
|
1211 |
}, |
|
|
1212 |
"outputs": [], |
|
|
1213 |
"source": [] |
|
|
1214 |
}, |
|
|
1215 |
{ |
|
|
1216 |
"cell_type": "code", |
|
|
1217 |
"execution_count": null, |
|
|
1218 |
"id": "2145e65a", |
|
|
1219 |
"metadata": { |
|
|
1220 |
"id": "2145e65a" |
|
|
1221 |
}, |
|
|
1222 |
"outputs": [], |
|
|
1223 |
"source": [ |
|
|
1224 |
"pred_ids = [all_ids[i[0]] for i in I]\n", |
|
|
1225 |
"# score=sum((pred_ids[i]==inp_label[i])*1 for i in range(len(pred_ids)))\n", |
|
|
1226 |
"# score/len(inp_label)" |
|
|
1227 |
] |
|
|
1228 |
}, |
|
|
1229 |
{ |
|
|
1230 |
"cell_type": "markdown", |
|
|
1231 |
"id": "85c1243b", |
|
|
1232 |
"metadata": { |
|
|
1233 |
"id": "85c1243b" |
|
|
1234 |
}, |
|
|
1235 |
"source": [ |
|
|
1236 |
"In ground truth, zero or more than one codes are also present for each term; here only one code is predicted for each query" |
|
|
1237 |
] |
|
|
1238 |
}, |
|
|
1239 |
{ |
|
|
1240 |
"cell_type": "code", |
|
|
1241 |
"execution_count": null, |
|
|
1242 |
"id": "d7476a77", |
|
|
1243 |
"metadata": { |
|
|
1244 |
"id": "d7476a77" |
|
|
1245 |
}, |
|
|
1246 |
"outputs": [], |
|
|
1247 |
"source": [ |
|
|
1248 |
"p = [[i] for i in pred_ids]\n", |
|
|
1249 |
"t = []\n", |
|
|
1250 |
"for i in inp_labels:\n", |
|
|
1251 |
" try:\n", |
|
|
1252 |
" t.append([int(i)])\n", |
|
|
1253 |
" except:\n", |
|
|
1254 |
" try:\n", |
|
|
1255 |
" t.append([int(j) for j in (i.split('+'))])\n", |
|
|
1256 |
" except:\n", |
|
|
1257 |
"# print('nomap')\n", |
|
|
1258 |
" t.append([])\n" |
|
|
1259 |
] |
|
|
1260 |
}, |
|
|
1261 |
{ |
|
|
1262 |
"cell_type": "code", |
|
|
1263 |
"execution_count": null, |
|
|
1264 |
"id": "5a676132", |
|
|
1265 |
"metadata": { |
|
|
1266 |
"id": "5a676132", |
|
|
1267 |
"outputId": "2f641e72-e210-4828-965e-03a19f935586" |
|
|
1268 |
}, |
|
|
1269 |
"outputs": [ |
|
|
1270 |
{ |
|
|
1271 |
"data": { |
|
|
1272 |
"text/plain": [ |
|
|
1273 |
"38341003" |
|
|
1274 |
] |
|
|
1275 |
}, |
|
|
1276 |
"execution_count": 49, |
|
|
1277 |
"metadata": {}, |
|
|
1278 |
"output_type": "execute_result" |
|
|
1279 |
} |
|
|
1280 |
], |
|
|
1281 |
"source": [ |
|
|
1282 |
"p[0][0]" |
|
|
1283 |
] |
|
|
1284 |
}, |
|
|
1285 |
{ |
|
|
1286 |
"cell_type": "code", |
|
|
1287 |
"execution_count": null, |
|
|
1288 |
"id": "424b2281", |
|
|
1289 |
"metadata": { |
|
|
1290 |
"id": "424b2281", |
|
|
1291 |
"outputId": "59a92896-28b7-49f2-e3c8-867d987a78c2" |
|
|
1292 |
}, |
|
|
1293 |
"outputs": [ |
|
|
1294 |
{ |
|
|
1295 |
"data": { |
|
|
1296 |
"text/plain": [ |
|
|
1297 |
"True" |
|
|
1298 |
] |
|
|
1299 |
}, |
|
|
1300 |
"execution_count": 50, |
|
|
1301 |
"metadata": {}, |
|
|
1302 |
"output_type": "execute_result" |
|
|
1303 |
} |
|
|
1304 |
], |
|
|
1305 |
"source": [ |
|
|
1306 |
"p[0][0] in t[0]" |
|
|
1307 |
] |
|
|
1308 |
}, |
|
|
1309 |
{ |
|
|
1310 |
"cell_type": "code", |
|
|
1311 |
"execution_count": null, |
|
|
1312 |
"id": "ae535967", |
|
|
1313 |
"metadata": { |
|
|
1314 |
"id": "ae535967", |
|
|
1315 |
"outputId": "bd4df60d-5218-40bf-81a5-2cb7e7150e5d" |
|
|
1316 |
}, |
|
|
1317 |
"outputs": [ |
|
|
1318 |
{ |
|
|
1319 |
"name": "stdout", |
|
|
1320 |
"output_type": "stream", |
|
|
1321 |
"text": [ |
|
|
1322 |
"precision 0.3675187969924812\n", |
|
|
1323 |
"recall 0.359147685525349\n", |
|
|
1324 |
"f1 0.3632849645578643\n" |
|
|
1325 |
] |
|
|
1326 |
} |
|
|
1327 |
], |
|
|
1328 |
"source": [ |
|
|
1329 |
"pre = 0\n", |
|
|
1330 |
"for i in range(len(p)):\n", |
|
|
1331 |
" if p[i][0] in t[i]:\n", |
|
|
1332 |
" pre+=1\n", |
|
|
1333 |
"\n", |
|
|
1334 |
"pre /= len(p)\n", |
|
|
1335 |
"print('precision', pre)\n", |
|
|
1336 |
"\n", |
|
|
1337 |
"\n", |
|
|
1338 |
"rec = 0\n", |
|
|
1339 |
"for i in range(len(t)):\n", |
|
|
1340 |
" if len(t[i])==1:\n", |
|
|
1341 |
" if t[i][0] in p[i]:\n", |
|
|
1342 |
" rec+=1\n", |
|
|
1343 |
" elif len(t[i])>1:\n", |
|
|
1344 |
" for j in range(len(t[i])):\n", |
|
|
1345 |
" if t[i][j] in p[i]:\n", |
|
|
1346 |
" rec+=1\n", |
|
|
1347 |
"\n", |
|
|
1348 |
"rec /= sum(len(i) for i in t)\n", |
|
|
1349 |
"print('recall', rec) \n", |
|
|
1350 |
"\n", |
|
|
1351 |
"\n", |
|
|
1352 |
"f1 = 2*pre*rec/(pre+rec+np.finfo(np.float32).eps)\n", |
|
|
1353 |
"print('f1', f1)" |
|
|
1354 |
] |
|
|
1355 |
} |
|
|
1356 |
], |
|
|
1357 |
"metadata": { |
|
|
1358 |
"accelerator": "GPU", |
|
|
1359 |
"colab": { |
|
|
1360 |
"collapsed_sections": [], |
|
|
1361 |
"machine_shape": "hm", |
|
|
1362 |
"provenance": [] |
|
|
1363 |
}, |
|
|
1364 |
"gpuClass": "premium", |
|
|
1365 |
"kernelspec": { |
|
|
1366 |
"display_name": "Python 3 (ipykernel)", |
|
|
1367 |
"language": "python", |
|
|
1368 |
"name": "python3" |
|
|
1369 |
}, |
|
|
1370 |
"language_info": { |
|
|
1371 |
"codemirror_mode": { |
|
|
1372 |
"name": "ipython", |
|
|
1373 |
"version": 3 |
|
|
1374 |
}, |
|
|
1375 |
"file_extension": ".py", |
|
|
1376 |
"mimetype": "text/x-python", |
|
|
1377 |
"name": "python", |
|
|
1378 |
"nbconvert_exporter": "python", |
|
|
1379 |
"pygments_lexer": "ipython3", |
|
|
1380 |
"version": "3.9.12" |
|
|
1381 |
}, |
|
|
1382 |
"widgets": { |
|
|
1383 |
"application/vnd.jupyter.widget-state+json": { |
|
|
1384 |
"06f54b167c2e4289b78ba4822d2f98de": { |
|
|
1385 |
"model_module": "@jupyter-widgets/base", |
|
|
1386 |
"model_module_version": "1.2.0", |
|
|
1387 |
"model_name": "LayoutModel", |
|
|
1388 |
"state": { |
|
|
1389 |
"_model_module": "@jupyter-widgets/base", |
|
|
1390 |
"_model_module_version": "1.2.0", |
|
|
1391 |
"_model_name": "LayoutModel", |
|
|
1392 |
"_view_count": null, |
|
|
1393 |
"_view_module": "@jupyter-widgets/base", |
|
|
1394 |
"_view_module_version": "1.2.0", |
|
|
1395 |
"_view_name": "LayoutView", |
|
|
1396 |
"align_content": null, |
|
|
1397 |
"align_items": null, |
|
|
1398 |
"align_self": null, |
|
|
1399 |
"border": null, |
|
|
1400 |
"bottom": null, |
|
|
1401 |
"display": null, |
|
|
1402 |
"flex": null, |
|
|
1403 |
"flex_flow": null, |
|
|
1404 |
"grid_area": null, |
|
|
1405 |
"grid_auto_columns": null, |
|
|
1406 |
"grid_auto_flow": null, |
|
|
1407 |
"grid_auto_rows": null, |
|
|
1408 |
"grid_column": null, |
|
|
1409 |
"grid_gap": null, |
|
|
1410 |
"grid_row": null, |
|
|
1411 |
"grid_template_areas": null, |
|
|
1412 |
"grid_template_columns": null, |
|
|
1413 |
"grid_template_rows": null, |
|
|
1414 |
"height": null, |
|
|
1415 |
"justify_content": null, |
|
|
1416 |
"justify_items": null, |
|
|
1417 |
"left": null, |
|
|
1418 |
"margin": null, |
|
|
1419 |
"max_height": null, |
|
|
1420 |
"max_width": null, |
|
|
1421 |
"min_height": null, |
|
|
1422 |
"min_width": null, |
|
|
1423 |
"object_fit": null, |
|
|
1424 |
"object_position": null, |
|
|
1425 |
"order": null, |
|
|
1426 |
"overflow": null, |
|
|
1427 |
"overflow_x": null, |
|
|
1428 |
"overflow_y": null, |
|
|
1429 |
"padding": null, |
|
|
1430 |
"right": null, |
|
|
1431 |
"top": null, |
|
|
1432 |
"visibility": null, |
|
|
1433 |
"width": null |
|
|
1434 |
} |
|
|
1435 |
}, |
|
|
1436 |
"0e853c8f845d44fd85b172c8200ec82a": { |
|
|
1437 |
"model_module": "@jupyter-widgets/controls", |
|
|
1438 |
"model_module_version": "1.5.0", |
|
|
1439 |
"model_name": "HTMLModel", |
|
|
1440 |
"state": { |
|
|
1441 |
"_dom_classes": [], |
|
|
1442 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1443 |
"_model_module_version": "1.5.0", |
|
|
1444 |
"_model_name": "HTMLModel", |
|
|
1445 |
"_view_count": null, |
|
|
1446 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1447 |
"_view_module_version": "1.5.0", |
|
|
1448 |
"_view_name": "HTMLView", |
|
|
1449 |
"description": "", |
|
|
1450 |
"description_tooltip": null, |
|
|
1451 |
"layout": "IPY_MODEL_615e44bd9b404f96ab1ca449cb14d30d", |
|
|
1452 |
"placeholder": "", |
|
|
1453 |
"style": "IPY_MODEL_a0329c633eb04e0594ed4f033d25bc37", |
|
|
1454 |
"value": " 438M/438M [00:12<00:00, 34.9MB/s]" |
|
|
1455 |
} |
|
|
1456 |
}, |
|
|
1457 |
"17cd86d84b43442081de52f15f833a71": { |
|
|
1458 |
"model_module": "@jupyter-widgets/controls", |
|
|
1459 |
"model_module_version": "1.5.0", |
|
|
1460 |
"model_name": "HBoxModel", |
|
|
1461 |
"state": { |
|
|
1462 |
"_dom_classes": [], |
|
|
1463 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1464 |
"_model_module_version": "1.5.0", |
|
|
1465 |
"_model_name": "HBoxModel", |
|
|
1466 |
"_view_count": null, |
|
|
1467 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1468 |
"_view_module_version": "1.5.0", |
|
|
1469 |
"_view_name": "HBoxView", |
|
|
1470 |
"box_style": "", |
|
|
1471 |
"children": [ |
|
|
1472 |
"IPY_MODEL_dbfa65b199f44020be9db0547b7ab18e", |
|
|
1473 |
"IPY_MODEL_d4cb162e77d844d8a672746573950427", |
|
|
1474 |
"IPY_MODEL_f00d00978f0f4077a4d10eeec352734f" |
|
|
1475 |
], |
|
|
1476 |
"layout": "IPY_MODEL_94c0b3dad8754852b8f727454c03c814" |
|
|
1477 |
} |
|
|
1478 |
}, |
|
|
1479 |
"18c2c03f320e4c59a6451e13d3ce9221": { |
|
|
1480 |
"model_module": "@jupyter-widgets/controls", |
|
|
1481 |
"model_module_version": "1.5.0", |
|
|
1482 |
"model_name": "DescriptionStyleModel", |
|
|
1483 |
"state": { |
|
|
1484 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1485 |
"_model_module_version": "1.5.0", |
|
|
1486 |
"_model_name": "DescriptionStyleModel", |
|
|
1487 |
"_view_count": null, |
|
|
1488 |
"_view_module": "@jupyter-widgets/base", |
|
|
1489 |
"_view_module_version": "1.2.0", |
|
|
1490 |
"_view_name": "StyleView", |
|
|
1491 |
"description_width": "" |
|
|
1492 |
} |
|
|
1493 |
}, |
|
|
1494 |
"1f6c9e48bf54406da669ee35c3f61d11": { |
|
|
1495 |
"model_module": "@jupyter-widgets/base", |
|
|
1496 |
"model_module_version": "1.2.0", |
|
|
1497 |
"model_name": "LayoutModel", |
|
|
1498 |
"state": { |
|
|
1499 |
"_model_module": "@jupyter-widgets/base", |
|
|
1500 |
"_model_module_version": "1.2.0", |
|
|
1501 |
"_model_name": "LayoutModel", |
|
|
1502 |
"_view_count": null, |
|
|
1503 |
"_view_module": "@jupyter-widgets/base", |
|
|
1504 |
"_view_module_version": "1.2.0", |
|
|
1505 |
"_view_name": "LayoutView", |
|
|
1506 |
"align_content": null, |
|
|
1507 |
"align_items": null, |
|
|
1508 |
"align_self": null, |
|
|
1509 |
"border": null, |
|
|
1510 |
"bottom": null, |
|
|
1511 |
"display": null, |
|
|
1512 |
"flex": null, |
|
|
1513 |
"flex_flow": null, |
|
|
1514 |
"grid_area": null, |
|
|
1515 |
"grid_auto_columns": null, |
|
|
1516 |
"grid_auto_flow": null, |
|
|
1517 |
"grid_auto_rows": null, |
|
|
1518 |
"grid_column": null, |
|
|
1519 |
"grid_gap": null, |
|
|
1520 |
"grid_row": null, |
|
|
1521 |
"grid_template_areas": null, |
|
|
1522 |
"grid_template_columns": null, |
|
|
1523 |
"grid_template_rows": null, |
|
|
1524 |
"height": null, |
|
|
1525 |
"justify_content": null, |
|
|
1526 |
"justify_items": null, |
|
|
1527 |
"left": null, |
|
|
1528 |
"margin": null, |
|
|
1529 |
"max_height": null, |
|
|
1530 |
"max_width": null, |
|
|
1531 |
"min_height": null, |
|
|
1532 |
"min_width": null, |
|
|
1533 |
"object_fit": null, |
|
|
1534 |
"object_position": null, |
|
|
1535 |
"order": null, |
|
|
1536 |
"overflow": null, |
|
|
1537 |
"overflow_x": null, |
|
|
1538 |
"overflow_y": null, |
|
|
1539 |
"padding": null, |
|
|
1540 |
"right": null, |
|
|
1541 |
"top": null, |
|
|
1542 |
"visibility": null, |
|
|
1543 |
"width": null |
|
|
1544 |
} |
|
|
1545 |
}, |
|
|
1546 |
"243d9b8fbc0842cfb96b531e9762bb82": { |
|
|
1547 |
"model_module": "@jupyter-widgets/base", |
|
|
1548 |
"model_module_version": "1.2.0", |
|
|
1549 |
"model_name": "LayoutModel", |
|
|
1550 |
"state": { |
|
|
1551 |
"_model_module": "@jupyter-widgets/base", |
|
|
1552 |
"_model_module_version": "1.2.0", |
|
|
1553 |
"_model_name": "LayoutModel", |
|
|
1554 |
"_view_count": null, |
|
|
1555 |
"_view_module": "@jupyter-widgets/base", |
|
|
1556 |
"_view_module_version": "1.2.0", |
|
|
1557 |
"_view_name": "LayoutView", |
|
|
1558 |
"align_content": null, |
|
|
1559 |
"align_items": null, |
|
|
1560 |
"align_self": null, |
|
|
1561 |
"border": null, |
|
|
1562 |
"bottom": null, |
|
|
1563 |
"display": null, |
|
|
1564 |
"flex": null, |
|
|
1565 |
"flex_flow": null, |
|
|
1566 |
"grid_area": null, |
|
|
1567 |
"grid_auto_columns": null, |
|
|
1568 |
"grid_auto_flow": null, |
|
|
1569 |
"grid_auto_rows": null, |
|
|
1570 |
"grid_column": null, |
|
|
1571 |
"grid_gap": null, |
|
|
1572 |
"grid_row": null, |
|
|
1573 |
"grid_template_areas": null, |
|
|
1574 |
"grid_template_columns": null, |
|
|
1575 |
"grid_template_rows": null, |
|
|
1576 |
"height": null, |
|
|
1577 |
"justify_content": null, |
|
|
1578 |
"justify_items": null, |
|
|
1579 |
"left": null, |
|
|
1580 |
"margin": null, |
|
|
1581 |
"max_height": null, |
|
|
1582 |
"max_width": null, |
|
|
1583 |
"min_height": null, |
|
|
1584 |
"min_width": null, |
|
|
1585 |
"object_fit": null, |
|
|
1586 |
"object_position": null, |
|
|
1587 |
"order": null, |
|
|
1588 |
"overflow": null, |
|
|
1589 |
"overflow_x": null, |
|
|
1590 |
"overflow_y": null, |
|
|
1591 |
"padding": null, |
|
|
1592 |
"right": null, |
|
|
1593 |
"top": null, |
|
|
1594 |
"visibility": null, |
|
|
1595 |
"width": null |
|
|
1596 |
} |
|
|
1597 |
}, |
|
|
1598 |
"2634942c850f4597be75b3a91f2d75a7": { |
|
|
1599 |
"model_module": "@jupyter-widgets/controls", |
|
|
1600 |
"model_module_version": "1.5.0", |
|
|
1601 |
"model_name": "FloatProgressModel", |
|
|
1602 |
"state": { |
|
|
1603 |
"_dom_classes": [], |
|
|
1604 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1605 |
"_model_module_version": "1.5.0", |
|
|
1606 |
"_model_name": "FloatProgressModel", |
|
|
1607 |
"_view_count": null, |
|
|
1608 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1609 |
"_view_module_version": "1.5.0", |
|
|
1610 |
"_view_name": "ProgressView", |
|
|
1611 |
"bar_style": "success", |
|
|
1612 |
"description": "", |
|
|
1613 |
"description_tooltip": null, |
|
|
1614 |
"layout": "IPY_MODEL_d76fe4566fb548188ecd8f0575fccb69", |
|
|
1615 |
"max": 198, |
|
|
1616 |
"min": 0, |
|
|
1617 |
"orientation": "horizontal", |
|
|
1618 |
"style": "IPY_MODEL_394fa40a235147e49fad6edbae132702", |
|
|
1619 |
"value": 198 |
|
|
1620 |
} |
|
|
1621 |
}, |
|
|
1622 |
"3389a5f07d1a4b4e88c118fe47f241aa": { |
|
|
1623 |
"model_module": "@jupyter-widgets/controls", |
|
|
1624 |
"model_module_version": "1.5.0", |
|
|
1625 |
"model_name": "HTMLModel", |
|
|
1626 |
"state": { |
|
|
1627 |
"_dom_classes": [], |
|
|
1628 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1629 |
"_model_module_version": "1.5.0", |
|
|
1630 |
"_model_name": "HTMLModel", |
|
|
1631 |
"_view_count": null, |
|
|
1632 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1633 |
"_view_module_version": "1.5.0", |
|
|
1634 |
"_view_name": "HTMLView", |
|
|
1635 |
"description": "", |
|
|
1636 |
"description_tooltip": null, |
|
|
1637 |
"layout": "IPY_MODEL_a9edca0387954a09ada230067e7355b2", |
|
|
1638 |
"placeholder": "", |
|
|
1639 |
"style": "IPY_MODEL_a8b2871e2a164c94a58762d5cd3a2d95", |
|
|
1640 |
"value": "Downloading: 100%" |
|
|
1641 |
} |
|
|
1642 |
}, |
|
|
1643 |
"394fa40a235147e49fad6edbae132702": { |
|
|
1644 |
"model_module": "@jupyter-widgets/controls", |
|
|
1645 |
"model_module_version": "1.5.0", |
|
|
1646 |
"model_name": "ProgressStyleModel", |
|
|
1647 |
"state": { |
|
|
1648 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1649 |
"_model_module_version": "1.5.0", |
|
|
1650 |
"_model_name": "ProgressStyleModel", |
|
|
1651 |
"_view_count": null, |
|
|
1652 |
"_view_module": "@jupyter-widgets/base", |
|
|
1653 |
"_view_module_version": "1.2.0", |
|
|
1654 |
"_view_name": "StyleView", |
|
|
1655 |
"bar_color": null, |
|
|
1656 |
"description_width": "" |
|
|
1657 |
} |
|
|
1658 |
}, |
|
|
1659 |
"39801cbd09484e439afb2829be9a9d52": { |
|
|
1660 |
"model_module": "@jupyter-widgets/controls", |
|
|
1661 |
"model_module_version": "1.5.0", |
|
|
1662 |
"model_name": "DescriptionStyleModel", |
|
|
1663 |
"state": { |
|
|
1664 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1665 |
"_model_module_version": "1.5.0", |
|
|
1666 |
"_model_name": "DescriptionStyleModel", |
|
|
1667 |
"_view_count": null, |
|
|
1668 |
"_view_module": "@jupyter-widgets/base", |
|
|
1669 |
"_view_module_version": "1.2.0", |
|
|
1670 |
"_view_name": "StyleView", |
|
|
1671 |
"description_width": "" |
|
|
1672 |
} |
|
|
1673 |
}, |
|
|
1674 |
"3f87d08da51c42ff8c909b12ca2df863": { |
|
|
1675 |
"model_module": "@jupyter-widgets/controls", |
|
|
1676 |
"model_module_version": "1.5.0", |
|
|
1677 |
"model_name": "HTMLModel", |
|
|
1678 |
"state": { |
|
|
1679 |
"_dom_classes": [], |
|
|
1680 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1681 |
"_model_module_version": "1.5.0", |
|
|
1682 |
"_model_name": "HTMLModel", |
|
|
1683 |
"_view_count": null, |
|
|
1684 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1685 |
"_view_module_version": "1.5.0", |
|
|
1686 |
"_view_name": "HTMLView", |
|
|
1687 |
"description": "", |
|
|
1688 |
"description_tooltip": null, |
|
|
1689 |
"layout": "IPY_MODEL_fb6b72144db74d8e85489007e0b97396", |
|
|
1690 |
"placeholder": "", |
|
|
1691 |
"style": "IPY_MODEL_18c2c03f320e4c59a6451e13d3ce9221", |
|
|
1692 |
"value": "Downloading: 100%" |
|
|
1693 |
} |
|
|
1694 |
}, |
|
|
1695 |
"4db71f00bd814dc3a0e5004eb5a2ae63": { |
|
|
1696 |
"model_module": "@jupyter-widgets/controls", |
|
|
1697 |
"model_module_version": "1.5.0", |
|
|
1698 |
"model_name": "DescriptionStyleModel", |
|
|
1699 |
"state": { |
|
|
1700 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1701 |
"_model_module_version": "1.5.0", |
|
|
1702 |
"_model_name": "DescriptionStyleModel", |
|
|
1703 |
"_view_count": null, |
|
|
1704 |
"_view_module": "@jupyter-widgets/base", |
|
|
1705 |
"_view_module_version": "1.2.0", |
|
|
1706 |
"_view_name": "StyleView", |
|
|
1707 |
"description_width": "" |
|
|
1708 |
} |
|
|
1709 |
}, |
|
|
1710 |
"521596b5e09b4d8fa79410d3601dcc32": { |
|
|
1711 |
"model_module": "@jupyter-widgets/base", |
|
|
1712 |
"model_module_version": "1.2.0", |
|
|
1713 |
"model_name": "LayoutModel", |
|
|
1714 |
"state": { |
|
|
1715 |
"_model_module": "@jupyter-widgets/base", |
|
|
1716 |
"_model_module_version": "1.2.0", |
|
|
1717 |
"_model_name": "LayoutModel", |
|
|
1718 |
"_view_count": null, |
|
|
1719 |
"_view_module": "@jupyter-widgets/base", |
|
|
1720 |
"_view_module_version": "1.2.0", |
|
|
1721 |
"_view_name": "LayoutView", |
|
|
1722 |
"align_content": null, |
|
|
1723 |
"align_items": null, |
|
|
1724 |
"align_self": null, |
|
|
1725 |
"border": null, |
|
|
1726 |
"bottom": null, |
|
|
1727 |
"display": null, |
|
|
1728 |
"flex": null, |
|
|
1729 |
"flex_flow": null, |
|
|
1730 |
"grid_area": null, |
|
|
1731 |
"grid_auto_columns": null, |
|
|
1732 |
"grid_auto_flow": null, |
|
|
1733 |
"grid_auto_rows": null, |
|
|
1734 |
"grid_column": null, |
|
|
1735 |
"grid_gap": null, |
|
|
1736 |
"grid_row": null, |
|
|
1737 |
"grid_template_areas": null, |
|
|
1738 |
"grid_template_columns": null, |
|
|
1739 |
"grid_template_rows": null, |
|
|
1740 |
"height": null, |
|
|
1741 |
"justify_content": null, |
|
|
1742 |
"justify_items": null, |
|
|
1743 |
"left": null, |
|
|
1744 |
"margin": null, |
|
|
1745 |
"max_height": null, |
|
|
1746 |
"max_width": null, |
|
|
1747 |
"min_height": null, |
|
|
1748 |
"min_width": null, |
|
|
1749 |
"object_fit": null, |
|
|
1750 |
"object_position": null, |
|
|
1751 |
"order": null, |
|
|
1752 |
"overflow": null, |
|
|
1753 |
"overflow_x": null, |
|
|
1754 |
"overflow_y": null, |
|
|
1755 |
"padding": null, |
|
|
1756 |
"right": null, |
|
|
1757 |
"top": null, |
|
|
1758 |
"visibility": null, |
|
|
1759 |
"width": null |
|
|
1760 |
} |
|
|
1761 |
}, |
|
|
1762 |
"58efb1c2ea714ee0a373ecc67d72368f": { |
|
|
1763 |
"model_module": "@jupyter-widgets/base", |
|
|
1764 |
"model_module_version": "1.2.0", |
|
|
1765 |
"model_name": "LayoutModel", |
|
|
1766 |
"state": { |
|
|
1767 |
"_model_module": "@jupyter-widgets/base", |
|
|
1768 |
"_model_module_version": "1.2.0", |
|
|
1769 |
"_model_name": "LayoutModel", |
|
|
1770 |
"_view_count": null, |
|
|
1771 |
"_view_module": "@jupyter-widgets/base", |
|
|
1772 |
"_view_module_version": "1.2.0", |
|
|
1773 |
"_view_name": "LayoutView", |
|
|
1774 |
"align_content": null, |
|
|
1775 |
"align_items": null, |
|
|
1776 |
"align_self": null, |
|
|
1777 |
"border": null, |
|
|
1778 |
"bottom": null, |
|
|
1779 |
"display": null, |
|
|
1780 |
"flex": null, |
|
|
1781 |
"flex_flow": null, |
|
|
1782 |
"grid_area": null, |
|
|
1783 |
"grid_auto_columns": null, |
|
|
1784 |
"grid_auto_flow": null, |
|
|
1785 |
"grid_auto_rows": null, |
|
|
1786 |
"grid_column": null, |
|
|
1787 |
"grid_gap": null, |
|
|
1788 |
"grid_row": null, |
|
|
1789 |
"grid_template_areas": null, |
|
|
1790 |
"grid_template_columns": null, |
|
|
1791 |
"grid_template_rows": null, |
|
|
1792 |
"height": null, |
|
|
1793 |
"justify_content": null, |
|
|
1794 |
"justify_items": null, |
|
|
1795 |
"left": null, |
|
|
1796 |
"margin": null, |
|
|
1797 |
"max_height": null, |
|
|
1798 |
"max_width": null, |
|
|
1799 |
"min_height": null, |
|
|
1800 |
"min_width": null, |
|
|
1801 |
"object_fit": null, |
|
|
1802 |
"object_position": null, |
|
|
1803 |
"order": null, |
|
|
1804 |
"overflow": null, |
|
|
1805 |
"overflow_x": null, |
|
|
1806 |
"overflow_y": null, |
|
|
1807 |
"padding": null, |
|
|
1808 |
"right": null, |
|
|
1809 |
"top": null, |
|
|
1810 |
"visibility": null, |
|
|
1811 |
"width": null |
|
|
1812 |
} |
|
|
1813 |
}, |
|
|
1814 |
"5abf07ae3e3c4f0eb8c12334ed383bcf": { |
|
|
1815 |
"model_module": "@jupyter-widgets/controls", |
|
|
1816 |
"model_module_version": "1.5.0", |
|
|
1817 |
"model_name": "ProgressStyleModel", |
|
|
1818 |
"state": { |
|
|
1819 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1820 |
"_model_module_version": "1.5.0", |
|
|
1821 |
"_model_name": "ProgressStyleModel", |
|
|
1822 |
"_view_count": null, |
|
|
1823 |
"_view_module": "@jupyter-widgets/base", |
|
|
1824 |
"_view_module_version": "1.2.0", |
|
|
1825 |
"_view_name": "StyleView", |
|
|
1826 |
"bar_color": null, |
|
|
1827 |
"description_width": "" |
|
|
1828 |
} |
|
|
1829 |
}, |
|
|
1830 |
"615e44bd9b404f96ab1ca449cb14d30d": { |
|
|
1831 |
"model_module": "@jupyter-widgets/base", |
|
|
1832 |
"model_module_version": "1.2.0", |
|
|
1833 |
"model_name": "LayoutModel", |
|
|
1834 |
"state": { |
|
|
1835 |
"_model_module": "@jupyter-widgets/base", |
|
|
1836 |
"_model_module_version": "1.2.0", |
|
|
1837 |
"_model_name": "LayoutModel", |
|
|
1838 |
"_view_count": null, |
|
|
1839 |
"_view_module": "@jupyter-widgets/base", |
|
|
1840 |
"_view_module_version": "1.2.0", |
|
|
1841 |
"_view_name": "LayoutView", |
|
|
1842 |
"align_content": null, |
|
|
1843 |
"align_items": null, |
|
|
1844 |
"align_self": null, |
|
|
1845 |
"border": null, |
|
|
1846 |
"bottom": null, |
|
|
1847 |
"display": null, |
|
|
1848 |
"flex": null, |
|
|
1849 |
"flex_flow": null, |
|
|
1850 |
"grid_area": null, |
|
|
1851 |
"grid_auto_columns": null, |
|
|
1852 |
"grid_auto_flow": null, |
|
|
1853 |
"grid_auto_rows": null, |
|
|
1854 |
"grid_column": null, |
|
|
1855 |
"grid_gap": null, |
|
|
1856 |
"grid_row": null, |
|
|
1857 |
"grid_template_areas": null, |
|
|
1858 |
"grid_template_columns": null, |
|
|
1859 |
"grid_template_rows": null, |
|
|
1860 |
"height": null, |
|
|
1861 |
"justify_content": null, |
|
|
1862 |
"justify_items": null, |
|
|
1863 |
"left": null, |
|
|
1864 |
"margin": null, |
|
|
1865 |
"max_height": null, |
|
|
1866 |
"max_width": null, |
|
|
1867 |
"min_height": null, |
|
|
1868 |
"min_width": null, |
|
|
1869 |
"object_fit": null, |
|
|
1870 |
"object_position": null, |
|
|
1871 |
"order": null, |
|
|
1872 |
"overflow": null, |
|
|
1873 |
"overflow_x": null, |
|
|
1874 |
"overflow_y": null, |
|
|
1875 |
"padding": null, |
|
|
1876 |
"right": null, |
|
|
1877 |
"top": null, |
|
|
1878 |
"visibility": null, |
|
|
1879 |
"width": null |
|
|
1880 |
} |
|
|
1881 |
}, |
|
|
1882 |
"743e49cf0f5a464b99ab5e1b96c81543": { |
|
|
1883 |
"model_module": "@jupyter-widgets/base", |
|
|
1884 |
"model_module_version": "1.2.0", |
|
|
1885 |
"model_name": "LayoutModel", |
|
|
1886 |
"state": { |
|
|
1887 |
"_model_module": "@jupyter-widgets/base", |
|
|
1888 |
"_model_module_version": "1.2.0", |
|
|
1889 |
"_model_name": "LayoutModel", |
|
|
1890 |
"_view_count": null, |
|
|
1891 |
"_view_module": "@jupyter-widgets/base", |
|
|
1892 |
"_view_module_version": "1.2.0", |
|
|
1893 |
"_view_name": "LayoutView", |
|
|
1894 |
"align_content": null, |
|
|
1895 |
"align_items": null, |
|
|
1896 |
"align_self": null, |
|
|
1897 |
"border": null, |
|
|
1898 |
"bottom": null, |
|
|
1899 |
"display": null, |
|
|
1900 |
"flex": null, |
|
|
1901 |
"flex_flow": null, |
|
|
1902 |
"grid_area": null, |
|
|
1903 |
"grid_auto_columns": null, |
|
|
1904 |
"grid_auto_flow": null, |
|
|
1905 |
"grid_auto_rows": null, |
|
|
1906 |
"grid_column": null, |
|
|
1907 |
"grid_gap": null, |
|
|
1908 |
"grid_row": null, |
|
|
1909 |
"grid_template_areas": null, |
|
|
1910 |
"grid_template_columns": null, |
|
|
1911 |
"grid_template_rows": null, |
|
|
1912 |
"height": null, |
|
|
1913 |
"justify_content": null, |
|
|
1914 |
"justify_items": null, |
|
|
1915 |
"left": null, |
|
|
1916 |
"margin": null, |
|
|
1917 |
"max_height": null, |
|
|
1918 |
"max_width": null, |
|
|
1919 |
"min_height": null, |
|
|
1920 |
"min_width": null, |
|
|
1921 |
"object_fit": null, |
|
|
1922 |
"object_position": null, |
|
|
1923 |
"order": null, |
|
|
1924 |
"overflow": null, |
|
|
1925 |
"overflow_x": null, |
|
|
1926 |
"overflow_y": null, |
|
|
1927 |
"padding": null, |
|
|
1928 |
"right": null, |
|
|
1929 |
"top": null, |
|
|
1930 |
"visibility": null, |
|
|
1931 |
"width": null |
|
|
1932 |
} |
|
|
1933 |
}, |
|
|
1934 |
"7467ec745de94196b786bf7219744a42": { |
|
|
1935 |
"model_module": "@jupyter-widgets/controls", |
|
|
1936 |
"model_module_version": "1.5.0", |
|
|
1937 |
"model_name": "HTMLModel", |
|
|
1938 |
"state": { |
|
|
1939 |
"_dom_classes": [], |
|
|
1940 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1941 |
"_model_module_version": "1.5.0", |
|
|
1942 |
"_model_name": "HTMLModel", |
|
|
1943 |
"_view_count": null, |
|
|
1944 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1945 |
"_view_module_version": "1.5.0", |
|
|
1946 |
"_view_name": "HTMLView", |
|
|
1947 |
"description": "", |
|
|
1948 |
"description_tooltip": null, |
|
|
1949 |
"layout": "IPY_MODEL_81f4f0e1758e4d2498e62dd95c2ea6c6", |
|
|
1950 |
"placeholder": "", |
|
|
1951 |
"style": "IPY_MODEL_4db71f00bd814dc3a0e5004eb5a2ae63", |
|
|
1952 |
"value": "Downloading: 100%" |
|
|
1953 |
} |
|
|
1954 |
}, |
|
|
1955 |
"76ffde2b8d2a4e1ba6a237bda4f7d856": { |
|
|
1956 |
"model_module": "@jupyter-widgets/base", |
|
|
1957 |
"model_module_version": "1.2.0", |
|
|
1958 |
"model_name": "LayoutModel", |
|
|
1959 |
"state": { |
|
|
1960 |
"_model_module": "@jupyter-widgets/base", |
|
|
1961 |
"_model_module_version": "1.2.0", |
|
|
1962 |
"_model_name": "LayoutModel", |
|
|
1963 |
"_view_count": null, |
|
|
1964 |
"_view_module": "@jupyter-widgets/base", |
|
|
1965 |
"_view_module_version": "1.2.0", |
|
|
1966 |
"_view_name": "LayoutView", |
|
|
1967 |
"align_content": null, |
|
|
1968 |
"align_items": null, |
|
|
1969 |
"align_self": null, |
|
|
1970 |
"border": null, |
|
|
1971 |
"bottom": null, |
|
|
1972 |
"display": null, |
|
|
1973 |
"flex": null, |
|
|
1974 |
"flex_flow": null, |
|
|
1975 |
"grid_area": null, |
|
|
1976 |
"grid_auto_columns": null, |
|
|
1977 |
"grid_auto_flow": null, |
|
|
1978 |
"grid_auto_rows": null, |
|
|
1979 |
"grid_column": null, |
|
|
1980 |
"grid_gap": null, |
|
|
1981 |
"grid_row": null, |
|
|
1982 |
"grid_template_areas": null, |
|
|
1983 |
"grid_template_columns": null, |
|
|
1984 |
"grid_template_rows": null, |
|
|
1985 |
"height": null, |
|
|
1986 |
"justify_content": null, |
|
|
1987 |
"justify_items": null, |
|
|
1988 |
"left": null, |
|
|
1989 |
"margin": null, |
|
|
1990 |
"max_height": null, |
|
|
1991 |
"max_width": null, |
|
|
1992 |
"min_height": null, |
|
|
1993 |
"min_width": null, |
|
|
1994 |
"object_fit": null, |
|
|
1995 |
"object_position": null, |
|
|
1996 |
"order": null, |
|
|
1997 |
"overflow": null, |
|
|
1998 |
"overflow_x": null, |
|
|
1999 |
"overflow_y": null, |
|
|
2000 |
"padding": null, |
|
|
2001 |
"right": null, |
|
|
2002 |
"top": null, |
|
|
2003 |
"visibility": null, |
|
|
2004 |
"width": null |
|
|
2005 |
} |
|
|
2006 |
}, |
|
|
2007 |
"79cac786f31e4ee083b5c637d28eb7fc": { |
|
|
2008 |
"model_module": "@jupyter-widgets/controls", |
|
|
2009 |
"model_module_version": "1.5.0", |
|
|
2010 |
"model_name": "FloatProgressModel", |
|
|
2011 |
"state": { |
|
|
2012 |
"_dom_classes": [], |
|
|
2013 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2014 |
"_model_module_version": "1.5.0", |
|
|
2015 |
"_model_name": "FloatProgressModel", |
|
|
2016 |
"_view_count": null, |
|
|
2017 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2018 |
"_view_module_version": "1.5.0", |
|
|
2019 |
"_view_name": "ProgressView", |
|
|
2020 |
"bar_style": "success", |
|
|
2021 |
"description": "", |
|
|
2022 |
"description_tooltip": null, |
|
|
2023 |
"layout": "IPY_MODEL_d20681be016d438eb638f1c7108f0d6a", |
|
|
2024 |
"max": 226150, |
|
|
2025 |
"min": 0, |
|
|
2026 |
"orientation": "horizontal", |
|
|
2027 |
"style": "IPY_MODEL_5abf07ae3e3c4f0eb8c12334ed383bcf", |
|
|
2028 |
"value": 226150 |
|
|
2029 |
} |
|
|
2030 |
}, |
|
|
2031 |
"7b3448ed1e9442fa92acd84ea146ac2d": { |
|
|
2032 |
"model_module": "@jupyter-widgets/controls", |
|
|
2033 |
"model_module_version": "1.5.0", |
|
|
2034 |
"model_name": "ProgressStyleModel", |
|
|
2035 |
"state": { |
|
|
2036 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2037 |
"_model_module_version": "1.5.0", |
|
|
2038 |
"_model_name": "ProgressStyleModel", |
|
|
2039 |
"_view_count": null, |
|
|
2040 |
"_view_module": "@jupyter-widgets/base", |
|
|
2041 |
"_view_module_version": "1.2.0", |
|
|
2042 |
"_view_name": "StyleView", |
|
|
2043 |
"bar_color": null, |
|
|
2044 |
"description_width": "" |
|
|
2045 |
} |
|
|
2046 |
}, |
|
|
2047 |
"7eb1948251dd460aa0d42f2d98536ed1": { |
|
|
2048 |
"model_module": "@jupyter-widgets/controls", |
|
|
2049 |
"model_module_version": "1.5.0", |
|
|
2050 |
"model_name": "HTMLModel", |
|
|
2051 |
"state": { |
|
|
2052 |
"_dom_classes": [], |
|
|
2053 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2054 |
"_model_module_version": "1.5.0", |
|
|
2055 |
"_model_name": "HTMLModel", |
|
|
2056 |
"_view_count": null, |
|
|
2057 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2058 |
"_view_module_version": "1.5.0", |
|
|
2059 |
"_view_name": "HTMLView", |
|
|
2060 |
"description": "", |
|
|
2061 |
"description_tooltip": null, |
|
|
2062 |
"layout": "IPY_MODEL_ac83aa99e714487a919ea7aebd0ca422", |
|
|
2063 |
"placeholder": "", |
|
|
2064 |
"style": "IPY_MODEL_b963ba7bcd0a481a99d32418a5411ea6", |
|
|
2065 |
"value": " 462/462 [00:00<00:00, 11.0kB/s]" |
|
|
2066 |
} |
|
|
2067 |
}, |
|
|
2068 |
"802c6b027b704fce99d59f7da5eb1955": { |
|
|
2069 |
"model_module": "@jupyter-widgets/base", |
|
|
2070 |
"model_module_version": "1.2.0", |
|
|
2071 |
"model_name": "LayoutModel", |
|
|
2072 |
"state": { |
|
|
2073 |
"_model_module": "@jupyter-widgets/base", |
|
|
2074 |
"_model_module_version": "1.2.0", |
|
|
2075 |
"_model_name": "LayoutModel", |
|
|
2076 |
"_view_count": null, |
|
|
2077 |
"_view_module": "@jupyter-widgets/base", |
|
|
2078 |
"_view_module_version": "1.2.0", |
|
|
2079 |
"_view_name": "LayoutView", |
|
|
2080 |
"align_content": null, |
|
|
2081 |
"align_items": null, |
|
|
2082 |
"align_self": null, |
|
|
2083 |
"border": null, |
|
|
2084 |
"bottom": null, |
|
|
2085 |
"display": null, |
|
|
2086 |
"flex": null, |
|
|
2087 |
"flex_flow": null, |
|
|
2088 |
"grid_area": null, |
|
|
2089 |
"grid_auto_columns": null, |
|
|
2090 |
"grid_auto_flow": null, |
|
|
2091 |
"grid_auto_rows": null, |
|
|
2092 |
"grid_column": null, |
|
|
2093 |
"grid_gap": null, |
|
|
2094 |
"grid_row": null, |
|
|
2095 |
"grid_template_areas": null, |
|
|
2096 |
"grid_template_columns": null, |
|
|
2097 |
"grid_template_rows": null, |
|
|
2098 |
"height": null, |
|
|
2099 |
"justify_content": null, |
|
|
2100 |
"justify_items": null, |
|
|
2101 |
"left": null, |
|
|
2102 |
"margin": null, |
|
|
2103 |
"max_height": null, |
|
|
2104 |
"max_width": null, |
|
|
2105 |
"min_height": null, |
|
|
2106 |
"min_width": null, |
|
|
2107 |
"object_fit": null, |
|
|
2108 |
"object_position": null, |
|
|
2109 |
"order": null, |
|
|
2110 |
"overflow": null, |
|
|
2111 |
"overflow_x": null, |
|
|
2112 |
"overflow_y": null, |
|
|
2113 |
"padding": null, |
|
|
2114 |
"right": null, |
|
|
2115 |
"top": null, |
|
|
2116 |
"visibility": null, |
|
|
2117 |
"width": null |
|
|
2118 |
} |
|
|
2119 |
}, |
|
|
2120 |
"81f4f0e1758e4d2498e62dd95c2ea6c6": { |
|
|
2121 |
"model_module": "@jupyter-widgets/base", |
|
|
2122 |
"model_module_version": "1.2.0", |
|
|
2123 |
"model_name": "LayoutModel", |
|
|
2124 |
"state": { |
|
|
2125 |
"_model_module": "@jupyter-widgets/base", |
|
|
2126 |
"_model_module_version": "1.2.0", |
|
|
2127 |
"_model_name": "LayoutModel", |
|
|
2128 |
"_view_count": null, |
|
|
2129 |
"_view_module": "@jupyter-widgets/base", |
|
|
2130 |
"_view_module_version": "1.2.0", |
|
|
2131 |
"_view_name": "LayoutView", |
|
|
2132 |
"align_content": null, |
|
|
2133 |
"align_items": null, |
|
|
2134 |
"align_self": null, |
|
|
2135 |
"border": null, |
|
|
2136 |
"bottom": null, |
|
|
2137 |
"display": null, |
|
|
2138 |
"flex": null, |
|
|
2139 |
"flex_flow": null, |
|
|
2140 |
"grid_area": null, |
|
|
2141 |
"grid_auto_columns": null, |
|
|
2142 |
"grid_auto_flow": null, |
|
|
2143 |
"grid_auto_rows": null, |
|
|
2144 |
"grid_column": null, |
|
|
2145 |
"grid_gap": null, |
|
|
2146 |
"grid_row": null, |
|
|
2147 |
"grid_template_areas": null, |
|
|
2148 |
"grid_template_columns": null, |
|
|
2149 |
"grid_template_rows": null, |
|
|
2150 |
"height": null, |
|
|
2151 |
"justify_content": null, |
|
|
2152 |
"justify_items": null, |
|
|
2153 |
"left": null, |
|
|
2154 |
"margin": null, |
|
|
2155 |
"max_height": null, |
|
|
2156 |
"max_width": null, |
|
|
2157 |
"min_height": null, |
|
|
2158 |
"min_width": null, |
|
|
2159 |
"object_fit": null, |
|
|
2160 |
"object_position": null, |
|
|
2161 |
"order": null, |
|
|
2162 |
"overflow": null, |
|
|
2163 |
"overflow_x": null, |
|
|
2164 |
"overflow_y": null, |
|
|
2165 |
"padding": null, |
|
|
2166 |
"right": null, |
|
|
2167 |
"top": null, |
|
|
2168 |
"visibility": null, |
|
|
2169 |
"width": null |
|
|
2170 |
} |
|
|
2171 |
}, |
|
|
2172 |
"862d52c5e86f49f68013d234d1cb80e1": { |
|
|
2173 |
"model_module": "@jupyter-widgets/base", |
|
|
2174 |
"model_module_version": "1.2.0", |
|
|
2175 |
"model_name": "LayoutModel", |
|
|
2176 |
"state": { |
|
|
2177 |
"_model_module": "@jupyter-widgets/base", |
|
|
2178 |
"_model_module_version": "1.2.0", |
|
|
2179 |
"_model_name": "LayoutModel", |
|
|
2180 |
"_view_count": null, |
|
|
2181 |
"_view_module": "@jupyter-widgets/base", |
|
|
2182 |
"_view_module_version": "1.2.0", |
|
|
2183 |
"_view_name": "LayoutView", |
|
|
2184 |
"align_content": null, |
|
|
2185 |
"align_items": null, |
|
|
2186 |
"align_self": null, |
|
|
2187 |
"border": null, |
|
|
2188 |
"bottom": null, |
|
|
2189 |
"display": null, |
|
|
2190 |
"flex": null, |
|
|
2191 |
"flex_flow": null, |
|
|
2192 |
"grid_area": null, |
|
|
2193 |
"grid_auto_columns": null, |
|
|
2194 |
"grid_auto_flow": null, |
|
|
2195 |
"grid_auto_rows": null, |
|
|
2196 |
"grid_column": null, |
|
|
2197 |
"grid_gap": null, |
|
|
2198 |
"grid_row": null, |
|
|
2199 |
"grid_template_areas": null, |
|
|
2200 |
"grid_template_columns": null, |
|
|
2201 |
"grid_template_rows": null, |
|
|
2202 |
"height": null, |
|
|
2203 |
"justify_content": null, |
|
|
2204 |
"justify_items": null, |
|
|
2205 |
"left": null, |
|
|
2206 |
"margin": null, |
|
|
2207 |
"max_height": null, |
|
|
2208 |
"max_width": null, |
|
|
2209 |
"min_height": null, |
|
|
2210 |
"min_width": null, |
|
|
2211 |
"object_fit": null, |
|
|
2212 |
"object_position": null, |
|
|
2213 |
"order": null, |
|
|
2214 |
"overflow": null, |
|
|
2215 |
"overflow_x": null, |
|
|
2216 |
"overflow_y": null, |
|
|
2217 |
"padding": null, |
|
|
2218 |
"right": null, |
|
|
2219 |
"top": null, |
|
|
2220 |
"visibility": null, |
|
|
2221 |
"width": null |
|
|
2222 |
} |
|
|
2223 |
}, |
|
|
2224 |
"91742ec5cec441b5a94d3046c777b22c": { |
|
|
2225 |
"model_module": "@jupyter-widgets/controls", |
|
|
2226 |
"model_module_version": "1.5.0", |
|
|
2227 |
"model_name": "HTMLModel", |
|
|
2228 |
"state": { |
|
|
2229 |
"_dom_classes": [], |
|
|
2230 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2231 |
"_model_module_version": "1.5.0", |
|
|
2232 |
"_model_name": "HTMLModel", |
|
|
2233 |
"_view_count": null, |
|
|
2234 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2235 |
"_view_module_version": "1.5.0", |
|
|
2236 |
"_view_name": "HTMLView", |
|
|
2237 |
"description": "", |
|
|
2238 |
"description_tooltip": null, |
|
|
2239 |
"layout": "IPY_MODEL_06f54b167c2e4289b78ba4822d2f98de", |
|
|
2240 |
"placeholder": "", |
|
|
2241 |
"style": "IPY_MODEL_9b0a676b668a4ff884a72196524a9229", |
|
|
2242 |
"value": "Downloading: 100%" |
|
|
2243 |
} |
|
|
2244 |
}, |
|
|
2245 |
"94c0b3dad8754852b8f727454c03c814": { |
|
|
2246 |
"model_module": "@jupyter-widgets/base", |
|
|
2247 |
"model_module_version": "1.2.0", |
|
|
2248 |
"model_name": "LayoutModel", |
|
|
2249 |
"state": { |
|
|
2250 |
"_model_module": "@jupyter-widgets/base", |
|
|
2251 |
"_model_module_version": "1.2.0", |
|
|
2252 |
"_model_name": "LayoutModel", |
|
|
2253 |
"_view_count": null, |
|
|
2254 |
"_view_module": "@jupyter-widgets/base", |
|
|
2255 |
"_view_module_version": "1.2.0", |
|
|
2256 |
"_view_name": "LayoutView", |
|
|
2257 |
"align_content": null, |
|
|
2258 |
"align_items": null, |
|
|
2259 |
"align_self": null, |
|
|
2260 |
"border": null, |
|
|
2261 |
"bottom": null, |
|
|
2262 |
"display": null, |
|
|
2263 |
"flex": null, |
|
|
2264 |
"flex_flow": null, |
|
|
2265 |
"grid_area": null, |
|
|
2266 |
"grid_auto_columns": null, |
|
|
2267 |
"grid_auto_flow": null, |
|
|
2268 |
"grid_auto_rows": null, |
|
|
2269 |
"grid_column": null, |
|
|
2270 |
"grid_gap": null, |
|
|
2271 |
"grid_row": null, |
|
|
2272 |
"grid_template_areas": null, |
|
|
2273 |
"grid_template_columns": null, |
|
|
2274 |
"grid_template_rows": null, |
|
|
2275 |
"height": null, |
|
|
2276 |
"justify_content": null, |
|
|
2277 |
"justify_items": null, |
|
|
2278 |
"left": null, |
|
|
2279 |
"margin": null, |
|
|
2280 |
"max_height": null, |
|
|
2281 |
"max_width": null, |
|
|
2282 |
"min_height": null, |
|
|
2283 |
"min_width": null, |
|
|
2284 |
"object_fit": null, |
|
|
2285 |
"object_position": null, |
|
|
2286 |
"order": null, |
|
|
2287 |
"overflow": null, |
|
|
2288 |
"overflow_x": null, |
|
|
2289 |
"overflow_y": null, |
|
|
2290 |
"padding": null, |
|
|
2291 |
"right": null, |
|
|
2292 |
"top": null, |
|
|
2293 |
"visibility": null, |
|
|
2294 |
"width": null |
|
|
2295 |
} |
|
|
2296 |
}, |
|
|
2297 |
"998be9daecca4ed6b835333b44a5ba9e": { |
|
|
2298 |
"model_module": "@jupyter-widgets/controls", |
|
|
2299 |
"model_module_version": "1.5.0", |
|
|
2300 |
"model_name": "HBoxModel", |
|
|
2301 |
"state": { |
|
|
2302 |
"_dom_classes": [], |
|
|
2303 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2304 |
"_model_module_version": "1.5.0", |
|
|
2305 |
"_model_name": "HBoxModel", |
|
|
2306 |
"_view_count": null, |
|
|
2307 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2308 |
"_view_module_version": "1.5.0", |
|
|
2309 |
"_view_name": "HBoxView", |
|
|
2310 |
"box_style": "", |
|
|
2311 |
"children": [ |
|
|
2312 |
"IPY_MODEL_7467ec745de94196b786bf7219744a42", |
|
|
2313 |
"IPY_MODEL_b2d2469f3f0e4639a51ee68b7b74d20a", |
|
|
2314 |
"IPY_MODEL_7eb1948251dd460aa0d42f2d98536ed1" |
|
|
2315 |
], |
|
|
2316 |
"layout": "IPY_MODEL_9cec228d653e40e8a3774021542ffb68" |
|
|
2317 |
} |
|
|
2318 |
}, |
|
|
2319 |
"9b0a676b668a4ff884a72196524a9229": { |
|
|
2320 |
"model_module": "@jupyter-widgets/controls", |
|
|
2321 |
"model_module_version": "1.5.0", |
|
|
2322 |
"model_name": "DescriptionStyleModel", |
|
|
2323 |
"state": { |
|
|
2324 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2325 |
"_model_module_version": "1.5.0", |
|
|
2326 |
"_model_name": "DescriptionStyleModel", |
|
|
2327 |
"_view_count": null, |
|
|
2328 |
"_view_module": "@jupyter-widgets/base", |
|
|
2329 |
"_view_module_version": "1.2.0", |
|
|
2330 |
"_view_name": "StyleView", |
|
|
2331 |
"description_width": "" |
|
|
2332 |
} |
|
|
2333 |
}, |
|
|
2334 |
"9cec228d653e40e8a3774021542ffb68": { |
|
|
2335 |
"model_module": "@jupyter-widgets/base", |
|
|
2336 |
"model_module_version": "1.2.0", |
|
|
2337 |
"model_name": "LayoutModel", |
|
|
2338 |
"state": { |
|
|
2339 |
"_model_module": "@jupyter-widgets/base", |
|
|
2340 |
"_model_module_version": "1.2.0", |
|
|
2341 |
"_model_name": "LayoutModel", |
|
|
2342 |
"_view_count": null, |
|
|
2343 |
"_view_module": "@jupyter-widgets/base", |
|
|
2344 |
"_view_module_version": "1.2.0", |
|
|
2345 |
"_view_name": "LayoutView", |
|
|
2346 |
"align_content": null, |
|
|
2347 |
"align_items": null, |
|
|
2348 |
"align_self": null, |
|
|
2349 |
"border": null, |
|
|
2350 |
"bottom": null, |
|
|
2351 |
"display": null, |
|
|
2352 |
"flex": null, |
|
|
2353 |
"flex_flow": null, |
|
|
2354 |
"grid_area": null, |
|
|
2355 |
"grid_auto_columns": null, |
|
|
2356 |
"grid_auto_flow": null, |
|
|
2357 |
"grid_auto_rows": null, |
|
|
2358 |
"grid_column": null, |
|
|
2359 |
"grid_gap": null, |
|
|
2360 |
"grid_row": null, |
|
|
2361 |
"grid_template_areas": null, |
|
|
2362 |
"grid_template_columns": null, |
|
|
2363 |
"grid_template_rows": null, |
|
|
2364 |
"height": null, |
|
|
2365 |
"justify_content": null, |
|
|
2366 |
"justify_items": null, |
|
|
2367 |
"left": null, |
|
|
2368 |
"margin": null, |
|
|
2369 |
"max_height": null, |
|
|
2370 |
"max_width": null, |
|
|
2371 |
"min_height": null, |
|
|
2372 |
"min_width": null, |
|
|
2373 |
"object_fit": null, |
|
|
2374 |
"object_position": null, |
|
|
2375 |
"order": null, |
|
|
2376 |
"overflow": null, |
|
|
2377 |
"overflow_x": null, |
|
|
2378 |
"overflow_y": null, |
|
|
2379 |
"padding": null, |
|
|
2380 |
"right": null, |
|
|
2381 |
"top": null, |
|
|
2382 |
"visibility": null, |
|
|
2383 |
"width": null |
|
|
2384 |
} |
|
|
2385 |
}, |
|
|
2386 |
"a0329c633eb04e0594ed4f033d25bc37": { |
|
|
2387 |
"model_module": "@jupyter-widgets/controls", |
|
|
2388 |
"model_module_version": "1.5.0", |
|
|
2389 |
"model_name": "DescriptionStyleModel", |
|
|
2390 |
"state": { |
|
|
2391 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2392 |
"_model_module_version": "1.5.0", |
|
|
2393 |
"_model_name": "DescriptionStyleModel", |
|
|
2394 |
"_view_count": null, |
|
|
2395 |
"_view_module": "@jupyter-widgets/base", |
|
|
2396 |
"_view_module_version": "1.2.0", |
|
|
2397 |
"_view_name": "StyleView", |
|
|
2398 |
"description_width": "" |
|
|
2399 |
} |
|
|
2400 |
}, |
|
|
2401 |
"a8b2871e2a164c94a58762d5cd3a2d95": { |
|
|
2402 |
"model_module": "@jupyter-widgets/controls", |
|
|
2403 |
"model_module_version": "1.5.0", |
|
|
2404 |
"model_name": "DescriptionStyleModel", |
|
|
2405 |
"state": { |
|
|
2406 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2407 |
"_model_module_version": "1.5.0", |
|
|
2408 |
"_model_name": "DescriptionStyleModel", |
|
|
2409 |
"_view_count": null, |
|
|
2410 |
"_view_module": "@jupyter-widgets/base", |
|
|
2411 |
"_view_module_version": "1.2.0", |
|
|
2412 |
"_view_name": "StyleView", |
|
|
2413 |
"description_width": "" |
|
|
2414 |
} |
|
|
2415 |
}, |
|
|
2416 |
"a9edca0387954a09ada230067e7355b2": { |
|
|
2417 |
"model_module": "@jupyter-widgets/base", |
|
|
2418 |
"model_module_version": "1.2.0", |
|
|
2419 |
"model_name": "LayoutModel", |
|
|
2420 |
"state": { |
|
|
2421 |
"_model_module": "@jupyter-widgets/base", |
|
|
2422 |
"_model_module_version": "1.2.0", |
|
|
2423 |
"_model_name": "LayoutModel", |
|
|
2424 |
"_view_count": null, |
|
|
2425 |
"_view_module": "@jupyter-widgets/base", |
|
|
2426 |
"_view_module_version": "1.2.0", |
|
|
2427 |
"_view_name": "LayoutView", |
|
|
2428 |
"align_content": null, |
|
|
2429 |
"align_items": null, |
|
|
2430 |
"align_self": null, |
|
|
2431 |
"border": null, |
|
|
2432 |
"bottom": null, |
|
|
2433 |
"display": null, |
|
|
2434 |
"flex": null, |
|
|
2435 |
"flex_flow": null, |
|
|
2436 |
"grid_area": null, |
|
|
2437 |
"grid_auto_columns": null, |
|
|
2438 |
"grid_auto_flow": null, |
|
|
2439 |
"grid_auto_rows": null, |
|
|
2440 |
"grid_column": null, |
|
|
2441 |
"grid_gap": null, |
|
|
2442 |
"grid_row": null, |
|
|
2443 |
"grid_template_areas": null, |
|
|
2444 |
"grid_template_columns": null, |
|
|
2445 |
"grid_template_rows": null, |
|
|
2446 |
"height": null, |
|
|
2447 |
"justify_content": null, |
|
|
2448 |
"justify_items": null, |
|
|
2449 |
"left": null, |
|
|
2450 |
"margin": null, |
|
|
2451 |
"max_height": null, |
|
|
2452 |
"max_width": null, |
|
|
2453 |
"min_height": null, |
|
|
2454 |
"min_width": null, |
|
|
2455 |
"object_fit": null, |
|
|
2456 |
"object_position": null, |
|
|
2457 |
"order": null, |
|
|
2458 |
"overflow": null, |
|
|
2459 |
"overflow_x": null, |
|
|
2460 |
"overflow_y": null, |
|
|
2461 |
"padding": null, |
|
|
2462 |
"right": null, |
|
|
2463 |
"top": null, |
|
|
2464 |
"visibility": null, |
|
|
2465 |
"width": null |
|
|
2466 |
} |
|
|
2467 |
}, |
|
|
2468 |
"ac83aa99e714487a919ea7aebd0ca422": { |
|
|
2469 |
"model_module": "@jupyter-widgets/base", |
|
|
2470 |
"model_module_version": "1.2.0", |
|
|
2471 |
"model_name": "LayoutModel", |
|
|
2472 |
"state": { |
|
|
2473 |
"_model_module": "@jupyter-widgets/base", |
|
|
2474 |
"_model_module_version": "1.2.0", |
|
|
2475 |
"_model_name": "LayoutModel", |
|
|
2476 |
"_view_count": null, |
|
|
2477 |
"_view_module": "@jupyter-widgets/base", |
|
|
2478 |
"_view_module_version": "1.2.0", |
|
|
2479 |
"_view_name": "LayoutView", |
|
|
2480 |
"align_content": null, |
|
|
2481 |
"align_items": null, |
|
|
2482 |
"align_self": null, |
|
|
2483 |
"border": null, |
|
|
2484 |
"bottom": null, |
|
|
2485 |
"display": null, |
|
|
2486 |
"flex": null, |
|
|
2487 |
"flex_flow": null, |
|
|
2488 |
"grid_area": null, |
|
|
2489 |
"grid_auto_columns": null, |
|
|
2490 |
"grid_auto_flow": null, |
|
|
2491 |
"grid_auto_rows": null, |
|
|
2492 |
"grid_column": null, |
|
|
2493 |
"grid_gap": null, |
|
|
2494 |
"grid_row": null, |
|
|
2495 |
"grid_template_areas": null, |
|
|
2496 |
"grid_template_columns": null, |
|
|
2497 |
"grid_template_rows": null, |
|
|
2498 |
"height": null, |
|
|
2499 |
"justify_content": null, |
|
|
2500 |
"justify_items": null, |
|
|
2501 |
"left": null, |
|
|
2502 |
"margin": null, |
|
|
2503 |
"max_height": null, |
|
|
2504 |
"max_width": null, |
|
|
2505 |
"min_height": null, |
|
|
2506 |
"min_width": null, |
|
|
2507 |
"object_fit": null, |
|
|
2508 |
"object_position": null, |
|
|
2509 |
"order": null, |
|
|
2510 |
"overflow": null, |
|
|
2511 |
"overflow_x": null, |
|
|
2512 |
"overflow_y": null, |
|
|
2513 |
"padding": null, |
|
|
2514 |
"right": null, |
|
|
2515 |
"top": null, |
|
|
2516 |
"visibility": null, |
|
|
2517 |
"width": null |
|
|
2518 |
} |
|
|
2519 |
}, |
|
|
2520 |
"b2d2469f3f0e4639a51ee68b7b74d20a": { |
|
|
2521 |
"model_module": "@jupyter-widgets/controls", |
|
|
2522 |
"model_module_version": "1.5.0", |
|
|
2523 |
"model_name": "FloatProgressModel", |
|
|
2524 |
"state": { |
|
|
2525 |
"_dom_classes": [], |
|
|
2526 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2527 |
"_model_module_version": "1.5.0", |
|
|
2528 |
"_model_name": "FloatProgressModel", |
|
|
2529 |
"_view_count": null, |
|
|
2530 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2531 |
"_view_module_version": "1.5.0", |
|
|
2532 |
"_view_name": "ProgressView", |
|
|
2533 |
"bar_style": "success", |
|
|
2534 |
"description": "", |
|
|
2535 |
"description_tooltip": null, |
|
|
2536 |
"layout": "IPY_MODEL_802c6b027b704fce99d59f7da5eb1955", |
|
|
2537 |
"max": 462, |
|
|
2538 |
"min": 0, |
|
|
2539 |
"orientation": "horizontal", |
|
|
2540 |
"style": "IPY_MODEL_df0df21a4ca647e683889a221065b16f", |
|
|
2541 |
"value": 462 |
|
|
2542 |
} |
|
|
2543 |
}, |
|
|
2544 |
"b769f41cc70c4c65a25f0d4a94811bf6": { |
|
|
2545 |
"model_module": "@jupyter-widgets/controls", |
|
|
2546 |
"model_module_version": "1.5.0", |
|
|
2547 |
"model_name": "HBoxModel", |
|
|
2548 |
"state": { |
|
|
2549 |
"_dom_classes": [], |
|
|
2550 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2551 |
"_model_module_version": "1.5.0", |
|
|
2552 |
"_model_name": "HBoxModel", |
|
|
2553 |
"_view_count": null, |
|
|
2554 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2555 |
"_view_module_version": "1.5.0", |
|
|
2556 |
"_view_name": "HBoxView", |
|
|
2557 |
"box_style": "", |
|
|
2558 |
"children": [ |
|
|
2559 |
"IPY_MODEL_3389a5f07d1a4b4e88c118fe47f241aa", |
|
|
2560 |
"IPY_MODEL_79cac786f31e4ee083b5c637d28eb7fc", |
|
|
2561 |
"IPY_MODEL_ff99ea7820634adb98d061ef265f2ff4" |
|
|
2562 |
], |
|
|
2563 |
"layout": "IPY_MODEL_c91b598e790e4c6ba21aeab31c177bf0" |
|
|
2564 |
} |
|
|
2565 |
}, |
|
|
2566 |
"b963ba7bcd0a481a99d32418a5411ea6": { |
|
|
2567 |
"model_module": "@jupyter-widgets/controls", |
|
|
2568 |
"model_module_version": "1.5.0", |
|
|
2569 |
"model_name": "DescriptionStyleModel", |
|
|
2570 |
"state": { |
|
|
2571 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2572 |
"_model_module_version": "1.5.0", |
|
|
2573 |
"_model_name": "DescriptionStyleModel", |
|
|
2574 |
"_view_count": null, |
|
|
2575 |
"_view_module": "@jupyter-widgets/base", |
|
|
2576 |
"_view_module_version": "1.2.0", |
|
|
2577 |
"_view_name": "StyleView", |
|
|
2578 |
"description_width": "" |
|
|
2579 |
} |
|
|
2580 |
}, |
|
|
2581 |
"ba13e64517a740bc89b29e25dac9de4f": { |
|
|
2582 |
"model_module": "@jupyter-widgets/controls", |
|
|
2583 |
"model_module_version": "1.5.0", |
|
|
2584 |
"model_name": "HBoxModel", |
|
|
2585 |
"state": { |
|
|
2586 |
"_dom_classes": [], |
|
|
2587 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2588 |
"_model_module_version": "1.5.0", |
|
|
2589 |
"_model_name": "HBoxModel", |
|
|
2590 |
"_view_count": null, |
|
|
2591 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2592 |
"_view_module_version": "1.5.0", |
|
|
2593 |
"_view_name": "HBoxView", |
|
|
2594 |
"box_style": "", |
|
|
2595 |
"children": [ |
|
|
2596 |
"IPY_MODEL_3f87d08da51c42ff8c909b12ca2df863", |
|
|
2597 |
"IPY_MODEL_e7b62de8e4794cd599198ad69e062f2b", |
|
|
2598 |
"IPY_MODEL_0e853c8f845d44fd85b172c8200ec82a" |
|
|
2599 |
], |
|
|
2600 |
"layout": "IPY_MODEL_743e49cf0f5a464b99ab5e1b96c81543" |
|
|
2601 |
} |
|
|
2602 |
}, |
|
|
2603 |
"ba7d87dddcaa4ab1b7b0d832b4b3c451": { |
|
|
2604 |
"model_module": "@jupyter-widgets/controls", |
|
|
2605 |
"model_module_version": "1.5.0", |
|
|
2606 |
"model_name": "DescriptionStyleModel", |
|
|
2607 |
"state": { |
|
|
2608 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2609 |
"_model_module_version": "1.5.0", |
|
|
2610 |
"_model_name": "DescriptionStyleModel", |
|
|
2611 |
"_view_count": null, |
|
|
2612 |
"_view_module": "@jupyter-widgets/base", |
|
|
2613 |
"_view_module_version": "1.2.0", |
|
|
2614 |
"_view_name": "StyleView", |
|
|
2615 |
"description_width": "" |
|
|
2616 |
} |
|
|
2617 |
}, |
|
|
2618 |
"c2f02ef98fc649fca32c157c0d048a89": { |
|
|
2619 |
"model_module": "@jupyter-widgets/base", |
|
|
2620 |
"model_module_version": "1.2.0", |
|
|
2621 |
"model_name": "LayoutModel", |
|
|
2622 |
"state": { |
|
|
2623 |
"_model_module": "@jupyter-widgets/base", |
|
|
2624 |
"_model_module_version": "1.2.0", |
|
|
2625 |
"_model_name": "LayoutModel", |
|
|
2626 |
"_view_count": null, |
|
|
2627 |
"_view_module": "@jupyter-widgets/base", |
|
|
2628 |
"_view_module_version": "1.2.0", |
|
|
2629 |
"_view_name": "LayoutView", |
|
|
2630 |
"align_content": null, |
|
|
2631 |
"align_items": null, |
|
|
2632 |
"align_self": null, |
|
|
2633 |
"border": null, |
|
|
2634 |
"bottom": null, |
|
|
2635 |
"display": null, |
|
|
2636 |
"flex": null, |
|
|
2637 |
"flex_flow": null, |
|
|
2638 |
"grid_area": null, |
|
|
2639 |
"grid_auto_columns": null, |
|
|
2640 |
"grid_auto_flow": null, |
|
|
2641 |
"grid_auto_rows": null, |
|
|
2642 |
"grid_column": null, |
|
|
2643 |
"grid_gap": null, |
|
|
2644 |
"grid_row": null, |
|
|
2645 |
"grid_template_areas": null, |
|
|
2646 |
"grid_template_columns": null, |
|
|
2647 |
"grid_template_rows": null, |
|
|
2648 |
"height": null, |
|
|
2649 |
"justify_content": null, |
|
|
2650 |
"justify_items": null, |
|
|
2651 |
"left": null, |
|
|
2652 |
"margin": null, |
|
|
2653 |
"max_height": null, |
|
|
2654 |
"max_width": null, |
|
|
2655 |
"min_height": null, |
|
|
2656 |
"min_width": null, |
|
|
2657 |
"object_fit": null, |
|
|
2658 |
"object_position": null, |
|
|
2659 |
"order": null, |
|
|
2660 |
"overflow": null, |
|
|
2661 |
"overflow_x": null, |
|
|
2662 |
"overflow_y": null, |
|
|
2663 |
"padding": null, |
|
|
2664 |
"right": null, |
|
|
2665 |
"top": null, |
|
|
2666 |
"visibility": null, |
|
|
2667 |
"width": null |
|
|
2668 |
} |
|
|
2669 |
}, |
|
|
2670 |
"c6727941f53a42248764a106e13596c9": { |
|
|
2671 |
"model_module": "@jupyter-widgets/controls", |
|
|
2672 |
"model_module_version": "1.5.0", |
|
|
2673 |
"model_name": "HTMLModel", |
|
|
2674 |
"state": { |
|
|
2675 |
"_dom_classes": [], |
|
|
2676 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2677 |
"_model_module_version": "1.5.0", |
|
|
2678 |
"_model_name": "HTMLModel", |
|
|
2679 |
"_view_count": null, |
|
|
2680 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2681 |
"_view_module_version": "1.5.0", |
|
|
2682 |
"_view_name": "HTMLView", |
|
|
2683 |
"description": "", |
|
|
2684 |
"description_tooltip": null, |
|
|
2685 |
"layout": "IPY_MODEL_521596b5e09b4d8fa79410d3601dcc32", |
|
|
2686 |
"placeholder": "", |
|
|
2687 |
"style": "IPY_MODEL_e2258a4aa3ad44d182d19fa6cb7aa05e", |
|
|
2688 |
"value": " 198/198 [00:00<00:00, 5.39kB/s]" |
|
|
2689 |
} |
|
|
2690 |
}, |
|
|
2691 |
"c91b598e790e4c6ba21aeab31c177bf0": { |
|
|
2692 |
"model_module": "@jupyter-widgets/base", |
|
|
2693 |
"model_module_version": "1.2.0", |
|
|
2694 |
"model_name": "LayoutModel", |
|
|
2695 |
"state": { |
|
|
2696 |
"_model_module": "@jupyter-widgets/base", |
|
|
2697 |
"_model_module_version": "1.2.0", |
|
|
2698 |
"_model_name": "LayoutModel", |
|
|
2699 |
"_view_count": null, |
|
|
2700 |
"_view_module": "@jupyter-widgets/base", |
|
|
2701 |
"_view_module_version": "1.2.0", |
|
|
2702 |
"_view_name": "LayoutView", |
|
|
2703 |
"align_content": null, |
|
|
2704 |
"align_items": null, |
|
|
2705 |
"align_self": null, |
|
|
2706 |
"border": null, |
|
|
2707 |
"bottom": null, |
|
|
2708 |
"display": null, |
|
|
2709 |
"flex": null, |
|
|
2710 |
"flex_flow": null, |
|
|
2711 |
"grid_area": null, |
|
|
2712 |
"grid_auto_columns": null, |
|
|
2713 |
"grid_auto_flow": null, |
|
|
2714 |
"grid_auto_rows": null, |
|
|
2715 |
"grid_column": null, |
|
|
2716 |
"grid_gap": null, |
|
|
2717 |
"grid_row": null, |
|
|
2718 |
"grid_template_areas": null, |
|
|
2719 |
"grid_template_columns": null, |
|
|
2720 |
"grid_template_rows": null, |
|
|
2721 |
"height": null, |
|
|
2722 |
"justify_content": null, |
|
|
2723 |
"justify_items": null, |
|
|
2724 |
"left": null, |
|
|
2725 |
"margin": null, |
|
|
2726 |
"max_height": null, |
|
|
2727 |
"max_width": null, |
|
|
2728 |
"min_height": null, |
|
|
2729 |
"min_width": null, |
|
|
2730 |
"object_fit": null, |
|
|
2731 |
"object_position": null, |
|
|
2732 |
"order": null, |
|
|
2733 |
"overflow": null, |
|
|
2734 |
"overflow_x": null, |
|
|
2735 |
"overflow_y": null, |
|
|
2736 |
"padding": null, |
|
|
2737 |
"right": null, |
|
|
2738 |
"top": null, |
|
|
2739 |
"visibility": null, |
|
|
2740 |
"width": null |
|
|
2741 |
} |
|
|
2742 |
}, |
|
|
2743 |
"d20681be016d438eb638f1c7108f0d6a": { |
|
|
2744 |
"model_module": "@jupyter-widgets/base", |
|
|
2745 |
"model_module_version": "1.2.0", |
|
|
2746 |
"model_name": "LayoutModel", |
|
|
2747 |
"state": { |
|
|
2748 |
"_model_module": "@jupyter-widgets/base", |
|
|
2749 |
"_model_module_version": "1.2.0", |
|
|
2750 |
"_model_name": "LayoutModel", |
|
|
2751 |
"_view_count": null, |
|
|
2752 |
"_view_module": "@jupyter-widgets/base", |
|
|
2753 |
"_view_module_version": "1.2.0", |
|
|
2754 |
"_view_name": "LayoutView", |
|
|
2755 |
"align_content": null, |
|
|
2756 |
"align_items": null, |
|
|
2757 |
"align_self": null, |
|
|
2758 |
"border": null, |
|
|
2759 |
"bottom": null, |
|
|
2760 |
"display": null, |
|
|
2761 |
"flex": null, |
|
|
2762 |
"flex_flow": null, |
|
|
2763 |
"grid_area": null, |
|
|
2764 |
"grid_auto_columns": null, |
|
|
2765 |
"grid_auto_flow": null, |
|
|
2766 |
"grid_auto_rows": null, |
|
|
2767 |
"grid_column": null, |
|
|
2768 |
"grid_gap": null, |
|
|
2769 |
"grid_row": null, |
|
|
2770 |
"grid_template_areas": null, |
|
|
2771 |
"grid_template_columns": null, |
|
|
2772 |
"grid_template_rows": null, |
|
|
2773 |
"height": null, |
|
|
2774 |
"justify_content": null, |
|
|
2775 |
"justify_items": null, |
|
|
2776 |
"left": null, |
|
|
2777 |
"margin": null, |
|
|
2778 |
"max_height": null, |
|
|
2779 |
"max_width": null, |
|
|
2780 |
"min_height": null, |
|
|
2781 |
"min_width": null, |
|
|
2782 |
"object_fit": null, |
|
|
2783 |
"object_position": null, |
|
|
2784 |
"order": null, |
|
|
2785 |
"overflow": null, |
|
|
2786 |
"overflow_x": null, |
|
|
2787 |
"overflow_y": null, |
|
|
2788 |
"padding": null, |
|
|
2789 |
"right": null, |
|
|
2790 |
"top": null, |
|
|
2791 |
"visibility": null, |
|
|
2792 |
"width": null |
|
|
2793 |
} |
|
|
2794 |
}, |
|
|
2795 |
"d2290c10bbff46548e613f5045eb7117": { |
|
|
2796 |
"model_module": "@jupyter-widgets/controls", |
|
|
2797 |
"model_module_version": "1.5.0", |
|
|
2798 |
"model_name": "ProgressStyleModel", |
|
|
2799 |
"state": { |
|
|
2800 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2801 |
"_model_module_version": "1.5.0", |
|
|
2802 |
"_model_name": "ProgressStyleModel", |
|
|
2803 |
"_view_count": null, |
|
|
2804 |
"_view_module": "@jupyter-widgets/base", |
|
|
2805 |
"_view_module_version": "1.2.0", |
|
|
2806 |
"_view_name": "StyleView", |
|
|
2807 |
"bar_color": null, |
|
|
2808 |
"description_width": "" |
|
|
2809 |
} |
|
|
2810 |
}, |
|
|
2811 |
"d4cb162e77d844d8a672746573950427": { |
|
|
2812 |
"model_module": "@jupyter-widgets/controls", |
|
|
2813 |
"model_module_version": "1.5.0", |
|
|
2814 |
"model_name": "FloatProgressModel", |
|
|
2815 |
"state": { |
|
|
2816 |
"_dom_classes": [], |
|
|
2817 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2818 |
"_model_module_version": "1.5.0", |
|
|
2819 |
"_model_name": "FloatProgressModel", |
|
|
2820 |
"_view_count": null, |
|
|
2821 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2822 |
"_view_module_version": "1.5.0", |
|
|
2823 |
"_view_name": "ProgressView", |
|
|
2824 |
"bar_style": "success", |
|
|
2825 |
"description": "", |
|
|
2826 |
"description_tooltip": null, |
|
|
2827 |
"layout": "IPY_MODEL_243d9b8fbc0842cfb96b531e9762bb82", |
|
|
2828 |
"max": 112, |
|
|
2829 |
"min": 0, |
|
|
2830 |
"orientation": "horizontal", |
|
|
2831 |
"style": "IPY_MODEL_7b3448ed1e9442fa92acd84ea146ac2d", |
|
|
2832 |
"value": 112 |
|
|
2833 |
} |
|
|
2834 |
}, |
|
|
2835 |
"d76fe4566fb548188ecd8f0575fccb69": { |
|
|
2836 |
"model_module": "@jupyter-widgets/base", |
|
|
2837 |
"model_module_version": "1.2.0", |
|
|
2838 |
"model_name": "LayoutModel", |
|
|
2839 |
"state": { |
|
|
2840 |
"_model_module": "@jupyter-widgets/base", |
|
|
2841 |
"_model_module_version": "1.2.0", |
|
|
2842 |
"_model_name": "LayoutModel", |
|
|
2843 |
"_view_count": null, |
|
|
2844 |
"_view_module": "@jupyter-widgets/base", |
|
|
2845 |
"_view_module_version": "1.2.0", |
|
|
2846 |
"_view_name": "LayoutView", |
|
|
2847 |
"align_content": null, |
|
|
2848 |
"align_items": null, |
|
|
2849 |
"align_self": null, |
|
|
2850 |
"border": null, |
|
|
2851 |
"bottom": null, |
|
|
2852 |
"display": null, |
|
|
2853 |
"flex": null, |
|
|
2854 |
"flex_flow": null, |
|
|
2855 |
"grid_area": null, |
|
|
2856 |
"grid_auto_columns": null, |
|
|
2857 |
"grid_auto_flow": null, |
|
|
2858 |
"grid_auto_rows": null, |
|
|
2859 |
"grid_column": null, |
|
|
2860 |
"grid_gap": null, |
|
|
2861 |
"grid_row": null, |
|
|
2862 |
"grid_template_areas": null, |
|
|
2863 |
"grid_template_columns": null, |
|
|
2864 |
"grid_template_rows": null, |
|
|
2865 |
"height": null, |
|
|
2866 |
"justify_content": null, |
|
|
2867 |
"justify_items": null, |
|
|
2868 |
"left": null, |
|
|
2869 |
"margin": null, |
|
|
2870 |
"max_height": null, |
|
|
2871 |
"max_width": null, |
|
|
2872 |
"min_height": null, |
|
|
2873 |
"min_width": null, |
|
|
2874 |
"object_fit": null, |
|
|
2875 |
"object_position": null, |
|
|
2876 |
"order": null, |
|
|
2877 |
"overflow": null, |
|
|
2878 |
"overflow_x": null, |
|
|
2879 |
"overflow_y": null, |
|
|
2880 |
"padding": null, |
|
|
2881 |
"right": null, |
|
|
2882 |
"top": null, |
|
|
2883 |
"visibility": null, |
|
|
2884 |
"width": null |
|
|
2885 |
} |
|
|
2886 |
}, |
|
|
2887 |
"dbfa65b199f44020be9db0547b7ab18e": { |
|
|
2888 |
"model_module": "@jupyter-widgets/controls", |
|
|
2889 |
"model_module_version": "1.5.0", |
|
|
2890 |
"model_name": "HTMLModel", |
|
|
2891 |
"state": { |
|
|
2892 |
"_dom_classes": [], |
|
|
2893 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2894 |
"_model_module_version": "1.5.0", |
|
|
2895 |
"_model_name": "HTMLModel", |
|
|
2896 |
"_view_count": null, |
|
|
2897 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2898 |
"_view_module_version": "1.5.0", |
|
|
2899 |
"_view_name": "HTMLView", |
|
|
2900 |
"description": "", |
|
|
2901 |
"description_tooltip": null, |
|
|
2902 |
"layout": "IPY_MODEL_76ffde2b8d2a4e1ba6a237bda4f7d856", |
|
|
2903 |
"placeholder": "", |
|
|
2904 |
"style": "IPY_MODEL_ba7d87dddcaa4ab1b7b0d832b4b3c451", |
|
|
2905 |
"value": "Downloading: 100%" |
|
|
2906 |
} |
|
|
2907 |
}, |
|
|
2908 |
"df0df21a4ca647e683889a221065b16f": { |
|
|
2909 |
"model_module": "@jupyter-widgets/controls", |
|
|
2910 |
"model_module_version": "1.5.0", |
|
|
2911 |
"model_name": "ProgressStyleModel", |
|
|
2912 |
"state": { |
|
|
2913 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2914 |
"_model_module_version": "1.5.0", |
|
|
2915 |
"_model_name": "ProgressStyleModel", |
|
|
2916 |
"_view_count": null, |
|
|
2917 |
"_view_module": "@jupyter-widgets/base", |
|
|
2918 |
"_view_module_version": "1.2.0", |
|
|
2919 |
"_view_name": "StyleView", |
|
|
2920 |
"bar_color": null, |
|
|
2921 |
"description_width": "" |
|
|
2922 |
} |
|
|
2923 |
}, |
|
|
2924 |
"e2258a4aa3ad44d182d19fa6cb7aa05e": { |
|
|
2925 |
"model_module": "@jupyter-widgets/controls", |
|
|
2926 |
"model_module_version": "1.5.0", |
|
|
2927 |
"model_name": "DescriptionStyleModel", |
|
|
2928 |
"state": { |
|
|
2929 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2930 |
"_model_module_version": "1.5.0", |
|
|
2931 |
"_model_name": "DescriptionStyleModel", |
|
|
2932 |
"_view_count": null, |
|
|
2933 |
"_view_module": "@jupyter-widgets/base", |
|
|
2934 |
"_view_module_version": "1.2.0", |
|
|
2935 |
"_view_name": "StyleView", |
|
|
2936 |
"description_width": "" |
|
|
2937 |
} |
|
|
2938 |
}, |
|
|
2939 |
"e6bdda56f1e14d45b1c99940a763e69f": { |
|
|
2940 |
"model_module": "@jupyter-widgets/controls", |
|
|
2941 |
"model_module_version": "1.5.0", |
|
|
2942 |
"model_name": "HBoxModel", |
|
|
2943 |
"state": { |
|
|
2944 |
"_dom_classes": [], |
|
|
2945 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2946 |
"_model_module_version": "1.5.0", |
|
|
2947 |
"_model_name": "HBoxModel", |
|
|
2948 |
"_view_count": null, |
|
|
2949 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2950 |
"_view_module_version": "1.5.0", |
|
|
2951 |
"_view_name": "HBoxView", |
|
|
2952 |
"box_style": "", |
|
|
2953 |
"children": [ |
|
|
2954 |
"IPY_MODEL_91742ec5cec441b5a94d3046c777b22c", |
|
|
2955 |
"IPY_MODEL_2634942c850f4597be75b3a91f2d75a7", |
|
|
2956 |
"IPY_MODEL_c6727941f53a42248764a106e13596c9" |
|
|
2957 |
], |
|
|
2958 |
"layout": "IPY_MODEL_c2f02ef98fc649fca32c157c0d048a89" |
|
|
2959 |
} |
|
|
2960 |
}, |
|
|
2961 |
"e7b62de8e4794cd599198ad69e062f2b": { |
|
|
2962 |
"model_module": "@jupyter-widgets/controls", |
|
|
2963 |
"model_module_version": "1.5.0", |
|
|
2964 |
"model_name": "FloatProgressModel", |
|
|
2965 |
"state": { |
|
|
2966 |
"_dom_classes": [], |
|
|
2967 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2968 |
"_model_module_version": "1.5.0", |
|
|
2969 |
"_model_name": "FloatProgressModel", |
|
|
2970 |
"_view_count": null, |
|
|
2971 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2972 |
"_view_module_version": "1.5.0", |
|
|
2973 |
"_view_name": "ProgressView", |
|
|
2974 |
"bar_style": "success", |
|
|
2975 |
"description": "", |
|
|
2976 |
"description_tooltip": null, |
|
|
2977 |
"layout": "IPY_MODEL_862d52c5e86f49f68013d234d1cb80e1", |
|
|
2978 |
"max": 438012727, |
|
|
2979 |
"min": 0, |
|
|
2980 |
"orientation": "horizontal", |
|
|
2981 |
"style": "IPY_MODEL_d2290c10bbff46548e613f5045eb7117", |
|
|
2982 |
"value": 438012727 |
|
|
2983 |
} |
|
|
2984 |
}, |
|
|
2985 |
"f00d00978f0f4077a4d10eeec352734f": { |
|
|
2986 |
"model_module": "@jupyter-widgets/controls", |
|
|
2987 |
"model_module_version": "1.5.0", |
|
|
2988 |
"model_name": "HTMLModel", |
|
|
2989 |
"state": { |
|
|
2990 |
"_dom_classes": [], |
|
|
2991 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2992 |
"_model_module_version": "1.5.0", |
|
|
2993 |
"_model_name": "HTMLModel", |
|
|
2994 |
"_view_count": null, |
|
|
2995 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2996 |
"_view_module_version": "1.5.0", |
|
|
2997 |
"_view_name": "HTMLView", |
|
|
2998 |
"description": "", |
|
|
2999 |
"description_tooltip": null, |
|
|
3000 |
"layout": "IPY_MODEL_1f6c9e48bf54406da669ee35c3f61d11", |
|
|
3001 |
"placeholder": "", |
|
|
3002 |
"style": "IPY_MODEL_fb9ddde1db3f47c5b8d7febc0ab691de", |
|
|
3003 |
"value": " 112/112 [00:00<00:00, 4.52kB/s]" |
|
|
3004 |
} |
|
|
3005 |
}, |
|
|
3006 |
"fb6b72144db74d8e85489007e0b97396": { |
|
|
3007 |
"model_module": "@jupyter-widgets/base", |
|
|
3008 |
"model_module_version": "1.2.0", |
|
|
3009 |
"model_name": "LayoutModel", |
|
|
3010 |
"state": { |
|
|
3011 |
"_model_module": "@jupyter-widgets/base", |
|
|
3012 |
"_model_module_version": "1.2.0", |
|
|
3013 |
"_model_name": "LayoutModel", |
|
|
3014 |
"_view_count": null, |
|
|
3015 |
"_view_module": "@jupyter-widgets/base", |
|
|
3016 |
"_view_module_version": "1.2.0", |
|
|
3017 |
"_view_name": "LayoutView", |
|
|
3018 |
"align_content": null, |
|
|
3019 |
"align_items": null, |
|
|
3020 |
"align_self": null, |
|
|
3021 |
"border": null, |
|
|
3022 |
"bottom": null, |
|
|
3023 |
"display": null, |
|
|
3024 |
"flex": null, |
|
|
3025 |
"flex_flow": null, |
|
|
3026 |
"grid_area": null, |
|
|
3027 |
"grid_auto_columns": null, |
|
|
3028 |
"grid_auto_flow": null, |
|
|
3029 |
"grid_auto_rows": null, |
|
|
3030 |
"grid_column": null, |
|
|
3031 |
"grid_gap": null, |
|
|
3032 |
"grid_row": null, |
|
|
3033 |
"grid_template_areas": null, |
|
|
3034 |
"grid_template_columns": null, |
|
|
3035 |
"grid_template_rows": null, |
|
|
3036 |
"height": null, |
|
|
3037 |
"justify_content": null, |
|
|
3038 |
"justify_items": null, |
|
|
3039 |
"left": null, |
|
|
3040 |
"margin": null, |
|
|
3041 |
"max_height": null, |
|
|
3042 |
"max_width": null, |
|
|
3043 |
"min_height": null, |
|
|
3044 |
"min_width": null, |
|
|
3045 |
"object_fit": null, |
|
|
3046 |
"object_position": null, |
|
|
3047 |
"order": null, |
|
|
3048 |
"overflow": null, |
|
|
3049 |
"overflow_x": null, |
|
|
3050 |
"overflow_y": null, |
|
|
3051 |
"padding": null, |
|
|
3052 |
"right": null, |
|
|
3053 |
"top": null, |
|
|
3054 |
"visibility": null, |
|
|
3055 |
"width": null |
|
|
3056 |
} |
|
|
3057 |
}, |
|
|
3058 |
"fb9ddde1db3f47c5b8d7febc0ab691de": { |
|
|
3059 |
"model_module": "@jupyter-widgets/controls", |
|
|
3060 |
"model_module_version": "1.5.0", |
|
|
3061 |
"model_name": "DescriptionStyleModel", |
|
|
3062 |
"state": { |
|
|
3063 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3064 |
"_model_module_version": "1.5.0", |
|
|
3065 |
"_model_name": "DescriptionStyleModel", |
|
|
3066 |
"_view_count": null, |
|
|
3067 |
"_view_module": "@jupyter-widgets/base", |
|
|
3068 |
"_view_module_version": "1.2.0", |
|
|
3069 |
"_view_name": "StyleView", |
|
|
3070 |
"description_width": "" |
|
|
3071 |
} |
|
|
3072 |
}, |
|
|
3073 |
"ff99ea7820634adb98d061ef265f2ff4": { |
|
|
3074 |
"model_module": "@jupyter-widgets/controls", |
|
|
3075 |
"model_module_version": "1.5.0", |
|
|
3076 |
"model_name": "HTMLModel", |
|
|
3077 |
"state": { |
|
|
3078 |
"_dom_classes": [], |
|
|
3079 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3080 |
"_model_module_version": "1.5.0", |
|
|
3081 |
"_model_name": "HTMLModel", |
|
|
3082 |
"_view_count": null, |
|
|
3083 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3084 |
"_view_module_version": "1.5.0", |
|
|
3085 |
"_view_name": "HTMLView", |
|
|
3086 |
"description": "", |
|
|
3087 |
"description_tooltip": null, |
|
|
3088 |
"layout": "IPY_MODEL_58efb1c2ea714ee0a373ecc67d72368f", |
|
|
3089 |
"placeholder": "", |
|
|
3090 |
"style": "IPY_MODEL_39801cbd09484e439afb2829be9a9d52", |
|
|
3091 |
"value": " 226k/226k [00:00<00:00, 1.73MB/s]" |
|
|
3092 |
} |
|
|
3093 |
} |
|
|
3094 |
} |
|
|
3095 |
} |
|
|
3096 |
}, |
|
|
3097 |
"nbformat": 4, |
|
|
3098 |
"nbformat_minor": 5 |
|
|
3099 |
} |