from transformers import BertTokenizer, BertForSequenceClassification
from utils.BertArchitecture import BertNER, BioBertNER
from utils.training import train_loop
from utils.dataloader import Dataloader
import torch
from torch.utils.data import DataLoader
from sklearn.model_selection import KFold
from torch.optim import SGD
from torch.optim import Adam
def get_label_descriptions(transfer_learning, type):
"""
This function returns the correct label descriptions according to the
current Model Architecture in use.
Parameters:
transfer_learning (bool): Whether we train BioBERT for transfer learning or not.
Returns:
tuple:
- label_to_ids (dict): A dictionary mapping labels to their respective IDs.
- ids_to_label (dict): A dictionary mapping IDs back to their respective labels.
"""
if not transfer_learning:
if type == 'Medical Condition':
type = 'MEDCOND'
elif type == 'Symptom':
type = 'SYMPTOM'
elif type == 'Medication':
type = 'MEDICATION'
elif type == 'Vital Statistic':
type = 'VITALSTAT'
elif type == 'Measurement Value':
type = 'MEASVAL'
elif type == 'Negation Cue':
type = 'NEGATION'
elif type == 'Medical Procedure':
type = 'PROCEDURE'
else:
raise ValueError('Type of annotation needs to be one of the following: Medical Condition, Symptom, Medication, Vital Statistic, Measurement Value, Negation Cue, Medical Procedure')
else:
if not type == 'Medical Condition':
raise ValueError('Type of annotation needs to be Medical Condition when using BioBERT as baseline.')
type = 'DISEASE'
label_to_ids = {
'B-' + type: 0,
'I-' + type: 1,
'O': 2
}
ids_to_label = {
0:'B-' + type,
1:'I-' + type,
2:'O'
}
return label_to_ids, ids_to_label, type
def initialize_model(transfer_learning):
"""
Initializes the model architecture according to whether we would like to use BioBERT
or not.
Parameters:
transfer_learning (bool): Whether we train BioBERT for transfer learning or not.
Returns:
model (BertNER | BioBertNER)
"""
if not transfer_learning:
model = BertNER(3) #O, B-, I- -> 3 entities
else:
model = BioBertNER(3)
return model
def train_fold(transfer_learning, train_idx, val_idx, batch_size, learning_rate, optimizer_name, epoch, type):
"""
Trains a whole fold during hyperparameter tuning.
Parameters:
transfer_learning (bool): Whether we train BioBERT for transfer learning or not.
train_idx (int): Index of the current split in training data.
val_idx (int): Index of the current split in testing data.
batch_size (int): Batch size used for training.
learning_rate (float): Learning rate used for optimizer.
optimizer_name (string): Name of the optimizer to be used (SGD or Adam).
epoch (int): Number of epochs used for training.
Returns:
tuple:
- train_res (dict): A dictionary containing the results obtained during training.
- test_res (dict): A dictionary containing the results obtained during testing.
"""
model = initialize_model(transfer_learning)
if optimizer_name == 'SGD':
optimizer = SGD(model.parameters(), lr=learning_rate, momentum = 0.9)
else:
optimizer = Adam(model.parameters(), lr=learning_rate)
train_subsampler = torch.utils.data.SubsetRandomSampler(train_idx)
val_subsampler = torch.utils.data.SubsetRandomSampler(val_idx)
parameters = {
"model": model,
"train_dataset": data,
"eval_dataset" : data,
"optimizer" : optimizer,
"batch_size" : batch_size,
"epochs" : epoch,
"train_sampler": train_subsampler,
"eval_sampler": val_subsampler,
"type" : type
}
train_res, test_res = train_loop(**parameters, verbose=False)
return train_res, test_res
import argparse
parser = argparse.ArgumentParser(
description='This class is used to optimize the hyperparameters of either the pretrained BioBERT or the base BERT.')
parser.add_argument('-tr', '--transfer_learning', type=bool, default=False,
help='Choose whether the BioBERT model should be used as baseline or not.')
parser.add_argument('-t', '--type', type=str, required=True,
help='Specify the type of annotation to process. Type of annotation needs to be one of the following: Medical Condition, Symptom, Medication, Vital Statistic, Measurement Value, Negation Cue, Medical Procedure')
args = parser.parse_args()
if args.type not in ['Medical Condition', 'Symptom', 'Medication', 'Vital Statistic', 'Measurement Value', 'Negation Cue', 'Medical Procedure']:
raise ValueError('Type of annotation needs to be one of the following: Medical Condition, Symptom, Medication, Vital Statistic, Measurement Value, Negation Cue, Medical Procedure')
#-----hyperparameter grids-----#
batch_sizes = [8, 16] #[8,16,32]
learning_rates = [0.1] #[0.1, 0.01, 0.001, 0.0001]
optimizers = ['SGD'] #['SGD', 'Adam']
epochs = [1] #[5, 10]
max_tokens = 128
label_to_ids, ids_to_label, type = get_label_descriptions(args.transfer_learning, args.type)
dataloader = Dataloader(label_to_ids, ids_to_label, args.transfer_learning, max_tokens, type)
data = dataloader.load_dataset(full=True)
best_f1_score = 0
best_param_grid = {
"batch_size": 0,
"learning_rate": 0,
"epochs" : 0,
"optimizer" : "",
"max_tokens" : 0
}
for batch_size in batch_sizes:
for learning_rate in learning_rates:
for optimizer_name in optimizers:
for epoch in epochs:
kf = KFold(n_splits=4, shuffle=True, random_state=7)
test_f1_scores = []
for fold, (train_idx, val_idx) in enumerate(kf.split(data)):
train_res, test_res = train_fold(args.transfer_learning, train_idx, val_idx, batch_size, learning_rate, optimizer_name, epoch, type)
test_f1_scores.append(test_res['avg_f1_score'])
print(f"Finished fold {fold+1} of 4!")
local_best_f1 = sum(test_f1_scores) / len(test_f1_scores)
if local_best_f1 > best_f1_score:
best_f1_score = local_best_f1
best_param_grid = {
"batch_size": batch_size,
"learning_rate": learning_rate,
"epochs" : epoch,
"optimizer" : optimizer_name,
"max_tokens" : max_tokens
}
print(f"Found new best f1 score: {best_f1_score}")
print(best_param_grid)
print("-------FINAL RESULTS-------")
print(f"Best f1 score: {best_f1_score}")
print(best_param_grid)