[c3444c]: / test / mantra / test.py

Download this file

145 lines (125 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from gensim import models
import os
import sys
sys.path.append("../../")
from pretrain.load_umls import UMLS
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel, AutoConfig
from data_util import load
import tqdm
batch_size = 128
device = "cuda:0"
def get_umls():
umls_label = []
umls_label_set = set()
umls_des = []
umls = UMLS("../../umls", source_range=["MSH", "SNOMEDCT_US", "MDR"], only_load_dict=True)
for cui in tqdm.tqdm(umls.cui2str):
if not cui in umls_label_set:
tmp_str = list(umls.cui2str[cui])
umls_label.extend([cui] * len(tmp_str))
umls_des.extend(tmp_str)
umls_label_set.update([cui])
print(len(umls_des))
return umls_label, umls_des
def main(filename, summary_method, umls_label, umls_des):
try:
config = AutoConfig.from_pretrained(filename)
model = AutoModel.from_pretrained(
filename, config=config).to(device)
except BaseException:
model = torch.load(os.path.join(
filename, 'pytorch_model.bin')).to(device)
try:
model.output_hidden_states = False
except BaseException:
pass
try:
tokenizer = AutoTokenizer.from_pretrained(filename)
except BaseException:
tokenizer = AutoTokenizer.from_pretrained(
os.path.join(filename, "../"))
corpus_list = [("Medline", "es"), ("Medline", "fr"), ("Medline", "nl"), ("Medline", "de"),
("EMEA", "es"), ("EMEA", "fr"), ("EMEA", "nl"), ("EMEA", "de"),
("Patent", "fr"), ("Patent", "de")]
"""
sty_list = ["Geographic Area",
"Drug Delivery Device", "Medical Device", "Research Device",
"Anatomical Abnormality", "Anatomical Structure", "Fully Formed Anatomical Structure",
"Chemical", "Chemical Viewed Functionally", "Chemical Viewed Structurally", "Inorganic Chemical", "Organic Chemical", "Clinical Drug"]
"""
result_dict = {}
umls_embedding = get_bert_embed(umls_des, model, tokenizer, summary_method=summary_method, tqdm_bar=True)
for corpus in corpus_list:
output_text, output_label, label_set = load(dataset=corpus[0], lang=corpus[1])
not_umls_label = [label for label in label_set if not label in umls_label]
print(f"Count of not appearing in UMLS subset: {len(not_umls_label)}")
text_embedding = get_bert_embed(output_text, model, tokenizer, summary_method=summary_method)
predict_label = predict(text_embedding, umls_embedding, umls_label)
p, r, f1 = metric(output_label, predict_label)
result_dict[corpus[0] + "|" + corpus[1]] = (p, r, f1)
print(p, r, f1)
return result_dict
def predict(text_embedding, umls_embedding, umls_label):
x_size = text_embedding.size(0)
sim = torch.matmul(text_embedding, umls_embedding.t())
most_similar = torch.max(sim, dim=1)[1]
return [umls_label[idx] for idx in most_similar]
def metric(output_label, predict_label):
predict_count = 0
true_count = 0
correct_count = 0
for idx in range(len(output_label)):
if isinstance(predict_label[idx], str):
predict_label[idx] = [predict_label[idx]]
if isinstance(output_label[idx], str):
output_label[idx] = [output_label[idx]]
predict_count += len(predict_label[idx])
true_count += len(output_label[idx])
for pred in predict_label[idx]:
if pred in output_label[idx]:
correct_count += 1
p = correct_count / predict_count
r = correct_count / true_count
if p == 0. or r == 0.:
f1 = 0.
else:
f1 = 2 * p * r / (p + r)
return p, r, f1
def get_bert_embed(phrase_list, m, tok, normalize=True, summary_method="CLS", tqdm_bar=False):
input_ids = []
for phrase in phrase_list:
input_ids.append(tok.encode_plus(
phrase, max_length=32, add_special_tokens=True,
truncation=True, pad_to_max_length=True)['input_ids'])
m.eval()
count = len(input_ids)
now_count = 0
with torch.no_grad():
if tqdm_bar:
pbar = tqdm.tqdm(total=count)
while now_count < count:
input_gpu_0 = torch.LongTensor(input_ids[now_count:min(
now_count + batch_size, count)]).to(device)
if summary_method == "CLS":
embed = m(input_gpu_0)[1]
if summary_method == "MEAN":
embed = torch.mean(m(input_gpu_0)[0], dim=1)
if normalize:
embed_norm = torch.norm(
embed, p=2, dim=1, keepdim=True).clamp(min=1e-12)
embed = embed / embed_norm
if now_count == 0:
output = embed
else:
output = torch.cat((output, embed), dim=0)
if tqdm_bar:
pbar.update(min(now_count + batch_size, count) - now_count)
now_count = min(now_count + batch_size, count)
if tqdm_bar:
pbar.close()
return output
if __name__ == '__main__':
umls_label, umls_des = get_umls()
main("bert-base-multilingual-cased", "CLS", umls_label, umls_des)